📄 lzx.c
字号:
bitsleft += 16; inpos+=2; \ }#define PEEK_BITS(n) (bitbuf >> (ULONG_BITS - (n)))#define REMOVE_BITS(n) ((bitbuf <<= (n)), (bitsleft -= (n)))#define READ_BITS(v,n) do { \ ENSURE_BITS(n); \ (v) = PEEK_BITS(n); \ REMOVE_BITS(n); \} while (0)/* Huffman macros */#define TABLEBITS(tbl) (LZX_##tbl##_TABLEBITS)#define MAXSYMBOLS(tbl) (LZX_##tbl##_MAXSYMBOLS)#define SYMTABLE(tbl) (pState->tbl##_table)#define LENTABLE(tbl) (pState->tbl##_len)/* BUILD_TABLE(tablename) builds a huffman lookup table from code lengths. * In reality, it just calls make_decode_table() with the appropriate * values - they're all fixed by some #defines anyway, so there's no point * writing each call out in full by hand. */#define BUILD_TABLE(tbl) \ if (make_decode_table( \ MAXSYMBOLS(tbl), TABLEBITS(tbl), LENTABLE(tbl), SYMTABLE(tbl) \ )) { return DECR_ILLEGALDATA; }/* READ_HUFFSYM(tablename, var) decodes one huffman symbol from the * bitstream using the stated table and puts it in var. */#define READ_HUFFSYM(tbl,var) do { \ ENSURE_BITS(16); \ hufftbl = SYMTABLE(tbl); \ if ((i = hufftbl[PEEK_BITS(TABLEBITS(tbl))]) >= MAXSYMBOLS(tbl)) { \ j = 1 << (ULONG_BITS - TABLEBITS(tbl)); \ do { \ j >>= 1; i <<= 1; i |= (bitbuf & j) ? 1 : 0; \ if (!j) { return DECR_ILLEGALDATA; } \ } while ((i = hufftbl[i]) >= MAXSYMBOLS(tbl)); \ } \ j = LENTABLE(tbl)[(var) = i]; \ REMOVE_BITS(j); \} while (0)/* READ_LENGTHS(tablename, first, last) reads in code lengths for symbols * first to last in the given table. The code lengths are stored in their * own special LZX way. */#define READ_LENGTHS(tbl,first,last) do { \ lb.bb = bitbuf; lb.bl = bitsleft; lb.ip = inpos; \ if (lzx_read_lens(pState, LENTABLE(tbl),(first),(last),&lb)) { \ return DECR_ILLEGALDATA; \ } \ bitbuf = lb.bb; bitsleft = lb.bl; inpos = lb.ip; \} while (0)/* make_decode_table(nsyms, nbits, length[], table[]) * * This function was coded by David Tritscher. It builds a fast huffman * decoding table out of just a canonical huffman code lengths table. * * nsyms = total number of symbols in this huffman tree. * nbits = any symbols with a code length of nbits or less can be decoded * in one lookup of the table. * length = A table to get code lengths from [0 to syms-1] * table = The table to fill up with decoded symbols and pointers. * * Returns 0 for OK or 1 for error */static int make_decode_table(ULONG nsyms, ULONG nbits, UBYTE *length, UWORD *table) { register UWORD sym; register ULONG leaf; register UBYTE bit_num = 1; ULONG fill; ULONG pos = 0; /* the current position in the decode table */ ULONG table_mask = 1 << nbits; ULONG bit_mask = table_mask >> 1; /* don't do 0 length codes */ ULONG next_symbol = bit_mask; /* base of allocation for long codes */ /* fill entries for codes short enough for a direct mapping */ while (bit_num <= nbits) { for (sym = 0; sym < nsyms; sym++) { if (length[sym] == bit_num) { leaf = pos; if((pos += bit_mask) > table_mask) return 1; /* table overrun */ /* fill all possible lookups of this symbol with the symbol itself */ fill = bit_mask; while (fill-- > 0) table[leaf++] = sym; } } bit_mask >>= 1; bit_num++; } /* if there are any codes longer than nbits */ if (pos != table_mask) { /* clear the remainder of the table */ for (sym = pos; sym < table_mask; sym++) table[sym] = 0; /* give ourselves room for codes to grow by up to 16 more bits */ pos <<= 16; table_mask <<= 16; bit_mask = 1 << 15; while (bit_num <= 16) { for (sym = 0; sym < nsyms; sym++) { if (length[sym] == bit_num) { leaf = pos >> 16; for (fill = 0; fill < bit_num - nbits; fill++) { /* if this path hasn't been taken yet, 'allocate' two entries */ if (table[leaf] == 0) { table[(next_symbol << 1)] = 0; table[(next_symbol << 1) + 1] = 0; table[leaf] = next_symbol++; } /* follow the path and select either left or right for next bit */ leaf = table[leaf] << 1; if ((pos >> (15-fill)) & 1) leaf++; } table[leaf] = sym; if ((pos += bit_mask) > table_mask) return 1; /* table overflow */ } } bit_mask >>= 1; bit_num++; } } /* full table? */ if (pos == table_mask) return 0; /* either erroneous table, or all elements are 0 - let's find out. */ for (sym = 0; sym < nsyms; sym++) if (length[sym]) return 1; return 0;}struct lzx_bits { ULONG bb; int bl; UBYTE *ip;};static int lzx_read_lens(struct LZXstate *pState, UBYTE *lens, ULONG first, ULONG last, struct lzx_bits *lb) { ULONG i,j, x,y; int z; register ULONG bitbuf = lb->bb; register int bitsleft = lb->bl; UBYTE *inpos = lb->ip; UWORD *hufftbl; for (x = 0; x < 20; x++) { READ_BITS(y, 4); LENTABLE(PRETREE)[x] = y; } BUILD_TABLE(PRETREE); for (x = first; x < last; ) { READ_HUFFSYM(PRETREE, z); if (z == 17) { READ_BITS(y, 4); y += 4; while (y--) lens[x++] = 0; } else if (z == 18) { READ_BITS(y, 5); y += 20; while (y--) lens[x++] = 0; } else if (z == 19) { READ_BITS(y, 1); y += 4; READ_HUFFSYM(PRETREE, z); z = lens[x] - z; if (z < 0) z += 17; while (y--) lens[x++] = z; } else { z = lens[x] - z; if (z < 0) z += 17; lens[x++] = z; } } lb->bb = bitbuf; lb->bl = bitsleft; lb->ip = inpos; return 0;}int LZXdecompress(struct LZXstate *pState, unsigned char *inpos, unsigned char *outpos, int inlen, int outlen) { UBYTE *endinp = inpos + inlen; UBYTE *window = pState->window; UBYTE *runsrc, *rundest; UWORD *hufftbl; /* used in READ_HUFFSYM macro as chosen decoding table */ ULONG window_posn = pState->window_posn; ULONG window_size = pState->window_size; ULONG R0 = pState->R0; ULONG R1 = pState->R1; ULONG R2 = pState->R2; register ULONG bitbuf; register int bitsleft; ULONG match_offset, i,j,k; /* ijk used in READ_HUFFSYM macro */ struct lzx_bits lb; /* used in READ_LENGTHS macro */ int togo = outlen, this_run, main_element, aligned_bits; int match_length, length_footer, extra, verbatim_bits; INIT_BITSTREAM; /* read header if necessary */ if (!pState->header_read) { i = j = 0; READ_BITS(k, 1); if (k) { READ_BITS(i,16); READ_BITS(j,16); } pState->intel_filesize = (i << 16) | j; /* or 0 if not encoded */ pState->header_read = 1; } /* main decoding loop */ while (togo > 0) { /* last block finished, new block expected */ if (pState->block_remaining == 0) { if (pState->block_type == LZX_BLOCKTYPE_UNCOMPRESSED) { if (pState->block_length & 1) inpos++; /* realign bitstream to word */ INIT_BITSTREAM; } READ_BITS(pState->block_type, 3); READ_BITS(i, 16); READ_BITS(j, 8); pState->block_remaining = pState->block_length = (i << 8) | j; switch (pState->block_type) { case LZX_BLOCKTYPE_ALIGNED: for (i = 0; i < 8; i++) { READ_BITS(j, 3); LENTABLE(ALIGNED)[i] = j; } BUILD_TABLE(ALIGNED); /* rest of aligned header is same as verbatim */ case LZX_BLOCKTYPE_VERBATIM: READ_LENGTHS(MAINTREE, 0, 256); READ_LENGTHS(MAINTREE, 256, pState->main_elements); BUILD_TABLE(MAINTREE); if (LENTABLE(MAINTREE)[0xE8] != 0) pState->intel_started = 1; READ_LENGTHS(LENGTH, 0, LZX_NUM_SECONDARY_LENGTHS); BUILD_TABLE(LENGTH); break; case LZX_BLOCKTYPE_UNCOMPRESSED: pState->intel_started = 1; /* because we can't assume otherwise */ ENSURE_BITS(16); /* get up to 16 pad bits into the buffer */ if (bitsleft > 16) inpos -= 2; /* and align the bitstream! */ R0 = inpos[0]|(inpos[1]<<8)|(inpos[2]<<16)|(inpos[3]<<24);inpos+=4; R1 = inpos[0]|(inpos[1]<<8)|(inpos[2]<<16)|(inpos[3]<<24);inpos+=4; R2 = inpos[0]|(inpos[1]<<8)|(inpos[2]<<16)|(inpos[3]<<24);inpos+=4; break; default: return DECR_ILLEGALDATA; } } /* buffer exhaustion check */ if (inpos > endinp) {
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -