⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 movpeaks_mc.c

📁 用C编写的部落寻优的优化算法
💻 C
📖 第 1 页 / 共 2 页
字号:
/* Moving Peaks Function --- 10/99 */

/* movpeaks.c
 * Copyright (C) 1999 Juergen Branke.

Modified and adapted for Particle Swarm Optimizer TRIBES by Maurice Clerc, 2004-07

 * This is free software; you can redistribute it and/or modify it under the
 * terms of the GNU General Public License.
 *
 * This module generates the Moving Peaks Evaluation Function, a
 * dynamic benchmark problem changing over time.
 */


//======================================================== PARAMETER SETTINGS
/*

T.M.Blackwell and J.Branke, "Multi-swarm optimization in dynamic
environments ", in Applications of Evolutionary Computing, ser LNCS,
G.R.Raidl, Ed., vol 3005. Springer, 2004, pp 489-599
...
The benchmarks parameter settings correspond
to the Scenario 2 as specified on the benchmark web site
http://www.aifb.uni-karlsruhe.de/~jbr/MovPeaks/
The search space has five dimensions [0, 100]^5 with 10 peaks. Peak heights can vary randomly in
the interval [30, 70], width can vary within [1, 12]. Scenario 2 specifies a family of
benchmark function since the initial location, height and width of the peaks, and their
subsequent development is determined by a pseudorandom number generator. Furthermore,
some of the parameters of Scenario 2 are only defined to within a range of
values. Of these, the following choices were made to facilitate comparisons with the
experiments of reference [7]: Change severity vlength = 1.0, correlation lambda =
0.0, and peak change frequency = 5000.
...
*/
int change_frequency = 0; /* number of evaluations between changes. change_frequency
		       =0 means that function never changes (or only if function change_peaks is called)*/


//int geno_size = 5;  // number of dimensions, or the number of double
                      //    valued genes

double vlength = 1; /* distance by which the peaks are moved, severity */

double height_severity=7.0; /* severity of height changes, larger numbers
                               mean larger severity */
double width_severity = 1; /* severity of width changes, larger numbers
                               mean larger severity */

/* lambda determines whether there is a direction of the movement, or whether
   they are totally random. For lambda = 1.0 each move has the same direction,
   while for lambda = 0.0, each move has a random direction */
double lambda=0.0;

int number_of_peaks = 50; /* number of peaks in the landscape */

int use_basis_function=0; /* if set to 1, a static landscape (basis_function) is included in the fitness evaluation */

int calculate_average_error=1; /* saves computation time if not needed and set to 0 */
int calculate_offline_performance = 1; /* saves computation time if not needed and set to 0 */
//int calculate_right_peak = 1; /* saves computation time if not needed and set to 0 */

/* minimum and maximum coordinate in each dimension */
double mincoordinate, maxcoordinate;

/* minimum and maximum height of the peaks
 height chosen randomly when standardheight <= 0.0
 If standardheight>0, the heigth is always equal to standardheight
*/
double minheight = 30.0, maxheight = 70.0, standardheight = 0.0;
/* width chosen randomly when standardwidth = 0.0
 If standardwidth>0, the width is always equal to standardwidth
 */
double minwidth = 1, maxwidth = 12.0, standardwidth = 0.0;


/* Functions */
/* evaluation function */
double eval_movpeaks (double *gen);

/* the following basis functions are provided :*/
double constant_basis_func(double *gen);
double five_peak_basis_func(double *gen);
/* the following peak functions are provided: */
double peak_function1(double *gen, int peak_number);
double peak_function_cone (double *gen, int peak_number);
double peak_function_hilly (double *gen, int peak_number);
double peak_function_twin (double  *gen, int peak_number);


/* allows to set the basis function used */
double (*basis_function) (double *gen)= constant_basis_func;
/* defines the form of a single peak */
double (*peak_function) (double *gen, int peak_number)=peak_function_cone; // You may change it


/****** END OF PARAMETER SECTION *******************/

void change_peaks();   /* preliminary declaration of function change_peaks()*/
//int recent_change; /*  1 indicates that a change has just ocurred */
//int current_peak;      /* peak on which the current best individual is located */
int maximum_peak;       /* number of highest peak */
//double current_maximum; /* fitness value of currently best individual */
//double offline_performance = 0.0;
//double offline_error = 0.0;
double avg_error=0;    /* average error so far */
//double current_error=0;/* error of the currently best individual */
double global_max;     /* absolute maximum in the fitness landscape */
//double global_min // absolute minimun
//int evals = 0;         /* number of evaluations so far */
double **peak;         /* data structure to store peak data */
double *shift;
double *coordinates;
//int *covered_peaks;    /* which peaks are covered by the population ? */

double **prev_movement;/* to store every peak's previous movement */
double dummy_eval (double *gen);

/* Basis Functions */

/* This gives a constant value back to the eval-function that chooses the max of them */
double constant_basis_func(double *gen)
{
  return 0.0;
}

double five_peak_basis_func(double *gen)
{
  int i,j;
  double maximum = -100000.0, dummy;
  static double basis_peak [5] [7] =
  {
    {8.0,  64.0,  67.0,  55.0,   4.0, 0.1, 50.0},
   {50.0,  13.0,  76.0,  15.0,   7.0, 0.1, 50.0},
    {9.0,  19.0,  27.0,  67.0,  24.0, 0.1, 50.0},
   {66.0,  87.0,  65.0,  19.0,  43.0, 0.1, 50.0},
   {76.0,  32.0,  43.0,  54.0,  65.0, 0.1, 50.0},
  };


  for(i=0; i<5; i++)
    {
      dummy = (gen[0]-basis_peak[i][0])*(gen[0]-basis_peak[i][0]);
      for (j=1; j< geno_size; j++)
	dummy += (gen[j]-basis_peak[i][j])*(gen[j]-basis_peak[i][j]);
      dummy = basis_peak[i][geno_size+1]-(basis_peak[i][geno_size]*dummy);
      if (dummy > maximum)
        maximum = dummy;
    }
  return maximum;
}


//======================================================= PEAK FUNCTIONS

/* sharp peaks */
double peak_function1 (double *gen, int peak_number)
{
  int j;
  double dummy;

  //dummy = (gen[0]-peak[peak_number][0])*(gen[0]-peak[peak_number][0]);
  //for (j=1; j< geno_size; j++)
  dummy=0;
	for (j=0; j< geno_size; j++)
    dummy += (gen[j]-peak[peak_number][j])*(gen[j]-peak[peak_number][j]);
  return peak[peak_number][geno_size+1]/(1+(peak[peak_number][geno_size])*dummy);
}

double peak_function_cone (double *gen, int peak_number)
{
  int j;
  double dummy;
  double peak_f;

  //dummy =  (gen[0]-peak[peak_number][0])*(gen[0]-peak[peak_number][0]);
  //for (j=1; j< geno_size; j++)
  //printf("\n");for (j=0;j<geno_size;j++) printf(" %f",gen[j]);

	dummy=0;
	for (j=0; j< geno_size; j++)
    dummy += (gen[j]-peak[peak_number][j])*(gen[j]-peak[peak_number][j]);
  peak_f=peak[peak_number][geno_size+1]-(peak[peak_number][geno_size]*sqrt(dummy));
//printf("\n peak_function_cone %f",peak_f);
  return peak_f ;
}

double peak_function_hilly (double *gen, int peak_number)
{
  int j;
  double dummy;

  dummy =  (gen[0]-peak[peak_number][0])*(gen[0]-peak[peak_number][0]);
  for (j=1; j< geno_size; j++)
    dummy += (gen[j]-peak[peak_number][j])*(gen[j]-peak[peak_number][j]);
  return peak[peak_number][geno_size+1]-(peak[peak_number][geno_size]*dummy)-0.01*sin(20.0*dummy);
}

double peak_function_twin (double  *gen, int peak_number) /* two twin peaks moving together */
{
  int j;
  double maximum = -100000.0, dummy;
  static double twin_peak [7] = /* difference to first peak */
  {
    1.0,  1.0,  1.0,  1.0,   1.0, 0.0, 0.0,
  };

  dummy = pow(gen[0]-peak[peak_number][0],2);
  for (j=1; j< geno_size; j++)
     dummy += pow(gen[j]-peak[peak_number][j],2);
  dummy = peak[peak_number][geno_size+1]-(peak[peak_number][geno_size]*dummy);
  maximum = dummy;
  dummy = pow(gen[j]-(peak[peak_number][0]+twin_peak[0]),2);
  for (j=1; j< geno_size; j++)
     dummy += pow(gen[j]-(peak[peak_number][j]+twin_peak[0]),2);
  dummy = peak[peak_number][geno_size+1]+twin_peak[geno_size+1]-((peak[peak_number][geno_size]+twin_peak[geno_size])*dummy);
  if (dummy > maximum)
    maximum = dummy;

  return maximum;
}

/* The following procedures may be used to change the step size over time */


void change_stepsize_random () /* assigns vlength a value from a normal distribution */
{
  vlength = movnrand();
}

void change_stepsize_linear() /* sinusoidal change of the stepsize, */
{
  static int counter = 1;
  static double frequency = 3.14159/20.0;  /* returns to same value after 20 changes */

  vlength = 1+ sin((double)counter*frequency);
  counter ++;
}



//================================================================= CHANGE_PEAKS
/* whenever this function is called, the peaks are changed */
void change_peaks()
{
  int i,j;
  double sum, sum2, offset, dummy;

  for(i=0; i<number_of_peaks; i++)
    {

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -