📄 cmvsoga.cpp
字号:
// CMVSOGA.cpp : implementation file
//
#include "stdafx.h"
#include "CMVSOGA.h"
#include "math.h"
#include "stdlib.h"
#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif
/////////////////////////////////////////////////////////////////////////////
// CMVSOGA.cpp
void CMVSOGA::initialpopulation(int ps, int gen ,double cr ,double mr,double *xtop,double *xbottom) //第一步,初始化。
{
int i ,j;
popsize=ps ;
maxgeneration=gen;
crossoverrate=cr;
mutationrate =mr;
for (i=0;i<variablenum;i++)
{
variabletop[i] =xtop[i];
variablebottom[i] =xbottom[i];
}
for(i=0;i<popsize;i++)
{
srand( (unsigned)time( NULL ) );
for (j=0;j<variablenum ;j++)
{
current.chromosome[j]=double(rand()%1000)/1000*(variabletop[j]-variablebottom[j])+variablebottom[j];
}
current.fitness=0;
current.value=0;
population.InsertAfter(population.FindIndex(i),current);//除了初始化使用insertafter外,其他的用setat命令。
}
}
void CMVSOGA::generatenextpopulation()//第三步,生成下一代。
{
selectionoperator();
crossoveroperator();
mutationoperator();
}
void CMVSOGA::evaluatepopulation() //第二步,评价个体,求最佳个体
{
calculateobjectvalue();
calculatefitnessvalue(); //在此步中因该按适应度值进行排序.链表的排序.
findbestandworstindividual();
}
void CMVSOGA:: calculateobjectvalue() //计算函数值
{
int i,j;
double x[variablenum];
for (i=0; i<popsize; i++)
{
current=population.GetAt(population.FindIndex(i)); //数值没有变化
current.value=0;
for (j=0;j<variablenum;j++)
{
x[j]=current.chromosome[j];
current.value=current.value+(j+1)*pow(x[j],4);
}
population.SetAt(population.FindIndex(i),current);//为什么计算值后面的都一样
}
}
void CMVSOGA::mutationoperator() //对于浮点数编码,变异算子的选择具有决定意义。
//需要guass正态分布函数,生成方差为sigma,均值为浮点数编码值c。
{
int i,j;
double r1,r2,p,sigma;//sigma高斯变异参数
sigma=0.5;
for (i=0;i<popsize;i++)
{
current=population.GetAt(population.FindIndex(i));
//生成均值为current.chromosome,方差为sigma的高斯分布数
for(j=0; j<variablenum; j++)
{
srand((unsigned int) time (NULL));
r1 =double( rand()%1001)/1000;
r2 = double(rand()%1001)/1000;
p=double(rand()%1000)/1000;
if(p<mutationrate)
{
//高斯变异
current.chromosome[j] = (current.chromosome[j]
+ sigma*sqrt(-2*log(r1)/0.4323)*sin(2*3.1415926*r2));
if (current.chromosome[j]>variabletop[j])
{
current.chromosome[j]=variabletop[j];
}
if (current.chromosome[j]<variablebottom [j])
{
current.chromosome[j]=variablebottom [j];
}
}
}
population.SetAt(population.FindIndex(i),current);
}
}
void CMVSOGA::selectionoperator() //从当前个体中按概率选择新种群,应该加一个复制选择,提高种群的平均适应度
//第二次循环出错
{
int i,j,pindex=0;
double p,pc,sum=0;
i=0;
j=0;
pindex=0;
p=0;
pc=0;
sum=0.001;
newpopulation.RemoveAll();
cfitness.RemoveAll();
//链表排序
// population.SetAt (population.FindIndex(0),current); //多余代码
for (i=1;i<popsize;i++)
{
current=population.GetAt(population.FindIndex(i));
for(j=0;j<i;j++) //从小到大用before排列。
{
current1=population.GetAt(population.FindIndex(j));//临时借用变量
if(current.fitness<=current1.fitness)
{
population.InsertBefore(population.FindIndex(j),current);
population.RemoveAt(population.FindIndex(i+1));
break;
}
}
// m=population.GetCount();
}
//链表排序
for(i=0;i<popsize;i++)//求适应度总值,以便归一化,是已经排序好的链。
{
current=population.GetAt(population.FindIndex(i));
sum+=current.fitness;
}
for(i=0;i<popsize; i++)//归一化
{
current=population.GetAt(population.FindIndex(i));
current.fitness=current.fitness/sum;
cfitness.InsertAfter (cfitness .FindIndex(i),current.fitness);
}
for(i=1;i<popsize; i++)//概率值从小到大;
{
current.fitness=cfitness.GetAt (cfitness.FindIndex(i-1))
+cfitness.GetAt(cfitness.FindIndex(i)); //归一化
cfitness.SetAt (cfitness .FindIndex(i),current.fitness);
population.SetAt(population.FindIndex(i),current);
}
for (i=0;i<popsize;)//轮盘赌概率选择。本段还有问题。
{
p=double(rand()%1000)/1000+0.0001; //随机生成概率
pindex=0; //遍历索引
pc=cfitness.GetAt(cfitness .FindIndex(0));
while(p>=pc&&pindex<popsize) //问题所在。
{
pc=cfitness.GetAt(cfitness .FindIndex(pindex));
pindex++;
}
//必须是从index~popsize,选择高概率的数。即大于概率p的数应该被选择,选择不满则进行下次选择。
for (j=popsize-1;j<pindex&&i<popsize;j--)
{
newpopulation.InsertAfter (newpopulation.FindIndex(0),
population.GetAt (population.FindIndex(j)));
i++;
}
}
for(i=0;i<popsize; i++)
{
population.SetAt (population.FindIndex(i),
newpopulation.GetAt (newpopulation.FindIndex(i)));
}
// j=newpopulation.GetCount();
// j=population.GetCount();
newpopulation.RemoveAll();
}
//current 变化后,以上没有问题了。
void CMVSOGA:: crossoveroperator() //非均匀算术线性交叉,浮点数适用,alpha ,beta是(0,1)之间的随机数
//对种群中两两交叉的个体选择也是随机选择的。也可取beta=1-alpha;
//current的变化会有一些改变。
{
int i,j;
double alpha,beta;
CList <int,int> index;
int point,temp;
double p;
srand( (unsigned)time( NULL ) );
for (i=0;i<popsize;i++)//生成序号
{
index.InsertAfter (index.FindIndex(i),i);
}
for (i=0;i<popsize;i++)//打乱序号
{
point=rand()%(popsize-1);
temp=index.GetAt(index.FindIndex(i));
index.SetAt(index.FindIndex(i),
index.GetAt(index.FindIndex(point)));
index.SetAt(index.FindIndex(point),temp);
}
for (i=0;i<popsize-1;i+=2)
{//按顺序序号,按序号选择两个母体进行交叉操作。
p=double(rand()%1000)/1000.0;
if (p<crossoverrate)
{
alpha=double(rand()%1000)/1000.0;
beta=double(rand()%1000)/1000.0;
current=population.GetAt(population.FindIndex(index.GetAt(index.FindIndex(i))));
current1=population.GetAt(population.FindIndex(index.GetAt(index.FindIndex(i+1))));//临时使用current1代替
for(j=0;j<variablenum;j++)
{
//交叉
current.chromosome[j]=(1-alpha)*current.chromosome[j]+
beta*current1.chromosome[j];
if (current.chromosome[j]>variabletop[j]) //判断是否超界.
{
current.chromosome[j]=variabletop[j];
}
if (current.chromosome[j]<variablebottom [j])
{
current.chromosome[j]=variablebottom [j];
}
current1.chromosome[j]=alpha*current.chromosome[j]
+(1- beta)*current1.chromosome[j];
if (current1.chromosome[j]>variabletop[j])
{
current1.chromosome[j]=variabletop[j];
}
if (current1.chromosome[j]<variablebottom [j])
{
current1.chromosome[j]=variablebottom [j];
}
}
//回代
}
newpopulation.InsertAfter (newpopulation.FindIndex(i),current);
newpopulation.InsertAfter (newpopulation.FindIndex(i),current1);
}
j=newpopulation.GetCount();
for (i=0;i<popsize;i++)
{
population.SetAt (population.FindIndex(i),
newpopulation.GetAt (newpopulation.FindIndex(i)));
}
newpopulation.RemoveAll();
}
void CMVSOGA:: findbestandworstindividual( )
{
int i;
bestindividual=population.GetAt(population.FindIndex(best_index));
worstindividual=population.GetAt(population.FindIndex(worst_index));
for (i=1;i<popsize; i++)
{
current=population.GetAt(population.FindIndex(i));
if (current.fitness>bestindividual.fitness)
{
bestindividual=current;
best_index=i;
}
else if (current.fitness<worstindividual.fitness)
{
worstindividual=current;
worst_index=i;
}
}
population.SetAt(population.FindIndex(worst_index),
population.GetAt(population.FindIndex(best_index)));
//用最好的替代最差的。使用这个之后结果相差很大。不收敛。
if (maxgeneration==0)
{
currentbest=bestindividual;
}
else
{
if(bestindividual.fitness>=currentbest.fitness)
{
currentbest=bestindividual;
}
}
}
void CMVSOGA:: calculatefitnessvalue() //适应度函数值计算,关键是适应度函数的设计
//current变化,这段程序变化较大,特别是排序。
{
int i;
double temp;//alpha,beta;//适应度函数的尺度变化系数
double cmax=100;
for(i=0;i<popsize;i++)
{
current=population.GetAt(population.FindIndex(i));
if(current.value<cmax)
{
temp=cmax-current.value;
}
else
{
temp=0.0;
}
/*
if((population[i].value+cmin)>0.0)
{temp=cmin+population[i].value;}
else
{temp=0.0;
}
*/
current.fitness=temp;
population.SetAt(population.FindIndex(i),current);
}
}
void CMVSOGA:: performevolution() //演示评价结果,有冗余代码,current变化,程序应该改变较大
{
if (bestindividual.fitness>currentbest.fitness)
{
currentbest=population.GetAt(population.FindIndex(best_index));
}
else
{
population.SetAt(population.FindIndex(worst_index),currentbest);
}
}
void CMVSOGA::GetResult(double *Result)
{
int i;
// currentbest =population.GetAt(population.FindIndex(best_index ));
for (i=0;i<variablenum;i++)
{
Result[i]=currentbest.chromosome[i];
}
Result[i]=currentbest.value;
}
CMVSOGA::CMVSOGA()
{
best_index=0;
worst_index=0;
crossoverrate=0; //交叉率
mutationrate=0; //变异率
maxgeneration=0;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -