📄 svm.cpp
字号:
{ int l = prob->l; int max_nr_class = 16; int nr_class = 0; int *label = Malloc(int,max_nr_class); int *count = Malloc(int,max_nr_class); int *data_label = Malloc(int,l); int i; for(i=0;i<l;i++) { int this_label = (int)prob->y[i]; int j; for(j=0;j<nr_class;j++) { if(this_label == label[j]) { ++count[j]; break; } } data_label[i] = j; if(j == nr_class) { if(nr_class == max_nr_class) { max_nr_class *= 2; label = (int *)realloc(label,max_nr_class*sizeof(int)); count = (int *)realloc(count,max_nr_class*sizeof(int)); } label[nr_class] = this_label; count[nr_class] = 1; ++nr_class; } } int *start = Malloc(int,nr_class); start[0] = 0; for(i=1;i<nr_class;i++) start[i] = start[i-1]+count[i-1]; for(i=0;i<l;i++) { perm[start[data_label[i]]] = i; ++start[data_label[i]]; } start[0] = 0; for(i=1;i<nr_class;i++) start[i] = start[i-1]+count[i-1]; *nr_class_ret = nr_class; *label_ret = label; *start_ret = start; *count_ret = count; free(data_label);}//// Interface functions//svm_model *svm_train(const svm_problem *prob, const svm_parameter *param){ svm_model *model = Malloc(svm_model,1); model->param = *param; model->free_sv = 0; // XXX if(param->svm_type == ONE_CLASS || param->svm_type == EPSILON_SVR || param->svm_type == NU_SVR) { // regression or one-class-svm model->nr_class = 2; model->label = NULL; model->nSV = NULL; model->probA = NULL; model->probB = NULL; model->sv_coef = Malloc(double *,1); if(param->probability && (param->svm_type == EPSILON_SVR || param->svm_type == NU_SVR)) { model->probA = Malloc(double,1); model->probA[0] = svm_svr_probability(prob,param); } decision_function f = svm_train_one(prob,param,0,0); model->rho = Malloc(double,1); model->rho[0] = f.rho; int nSV = 0; int i; for(i=0;i<prob->l;i++) if(fabs(f.alpha[i]) > 0) ++nSV; model->l = nSV; model->SV = Malloc(svm_node *,nSV); model->sv_coef[0] = Malloc(double,nSV); int j = 0; for(i=0;i<prob->l;i++) if(fabs(f.alpha[i]) > 0) { model->SV[j] = prob->x[i]; model->sv_coef[0][j] = f.alpha[i]; ++j; } free(f.alpha); } else { // classification int l = prob->l; int nr_class; int *label = NULL; int *start = NULL; int *count = NULL; int *perm = Malloc(int,l); // group training data of the same class svm_group_classes(prob,&nr_class,&label,&start,&count,perm); svm_node **x = Malloc(svm_node *,l); int i; for(i=0;i<l;i++) x[i] = prob->x[perm[i]]; // calculate weighted C double *weighted_C = Malloc(double, nr_class); for(i=0;i<nr_class;i++) weighted_C[i] = param->C; for(i=0;i<param->nr_weight;i++) { int j; for(j=0;j<nr_class;j++) if(param->weight_label[i] == label[j]) break; if(j == nr_class) fprintf(stderr,"warning: class label %d specified in weight is not found\n", param->weight_label[i]); else weighted_C[j] *= param->weight[i]; } // train k*(k-1)/2 models bool *nonzero = Malloc(bool,l); for(i=0;i<l;i++) nonzero[i] = false; decision_function *f = Malloc(decision_function,nr_class*(nr_class-1)/2); double *probA=NULL,*probB=NULL; if (param->probability) { probA=Malloc(double,nr_class*(nr_class-1)/2); probB=Malloc(double,nr_class*(nr_class-1)/2); } int p = 0; for(i=0;i<nr_class;i++) for(int j=i+1;j<nr_class;j++) { svm_problem sub_prob; int si = start[i], sj = start[j]; int ci = count[i], cj = count[j]; sub_prob.l = ci+cj; sub_prob.x = Malloc(svm_node *,sub_prob.l); sub_prob.y = Malloc(double,sub_prob.l); int k; for(k=0;k<ci;k++) { sub_prob.x[k] = x[si+k]; sub_prob.y[k] = +1; } for(k=0;k<cj;k++) { sub_prob.x[ci+k] = x[sj+k]; sub_prob.y[ci+k] = -1; } if(param->probability) svm_binary_svc_probability(&sub_prob,param,weighted_C[i],weighted_C[j],probA[p],probB[p]); f[p] = svm_train_one(&sub_prob,param,weighted_C[i],weighted_C[j]); for(k=0;k<ci;k++) if(!nonzero[si+k] && fabs(f[p].alpha[k]) > 0) nonzero[si+k] = true; for(k=0;k<cj;k++) if(!nonzero[sj+k] && fabs(f[p].alpha[ci+k]) > 0) nonzero[sj+k] = true; free(sub_prob.x); free(sub_prob.y); ++p; } // build output model->nr_class = nr_class; model->label = Malloc(int,nr_class); for(i=0;i<nr_class;i++) model->label[i] = label[i]; model->rho = Malloc(double,nr_class*(nr_class-1)/2); for(i=0;i<nr_class*(nr_class-1)/2;i++) model->rho[i] = f[i].rho; if(param->probability) { model->probA = Malloc(double,nr_class*(nr_class-1)/2); model->probB = Malloc(double,nr_class*(nr_class-1)/2); for(i=0;i<nr_class*(nr_class-1)/2;i++) { model->probA[i] = probA[i]; model->probB[i] = probB[i]; } } else { model->probA=NULL; model->probB=NULL; } int total_sv = 0; int *nz_count = Malloc(int,nr_class); model->nSV = Malloc(int,nr_class); for(i=0;i<nr_class;i++) { int nSV = 0; for(int j=0;j<count[i];j++) if(nonzero[start[i]+j]) { ++nSV; ++total_sv; } model->nSV[i] = nSV; nz_count[i] = nSV; } info("Total nSV = %d\n",total_sv); model->l = total_sv; model->SV = Malloc(svm_node *,total_sv); p = 0; for(i=0;i<l;i++) if(nonzero[i]) model->SV[p++] = x[i]; int *nz_start = Malloc(int,nr_class); nz_start[0] = 0; for(i=1;i<nr_class;i++) nz_start[i] = nz_start[i-1]+nz_count[i-1]; model->sv_coef = Malloc(double *,nr_class-1); for(i=0;i<nr_class-1;i++) model->sv_coef[i] = Malloc(double,total_sv); p = 0; for(i=0;i<nr_class;i++) for(int j=i+1;j<nr_class;j++) { // classifier (i,j): coefficients with // i are in sv_coef[j-1][nz_start[i]...], // j are in sv_coef[i][nz_start[j]...] int si = start[i]; int sj = start[j]; int ci = count[i]; int cj = count[j]; int q = nz_start[i]; int k; for(k=0;k<ci;k++) if(nonzero[si+k]) model->sv_coef[j-1][q++] = f[p].alpha[k]; q = nz_start[j]; for(k=0;k<cj;k++) if(nonzero[sj+k]) model->sv_coef[i][q++] = f[p].alpha[ci+k]; ++p; } free(label); free(probA); free(probB); free(count); free(perm); free(start); free(x); free(weighted_C); free(nonzero); for(i=0;i<nr_class*(nr_class-1)/2;i++) free(f[i].alpha); free(f); free(nz_count); free(nz_start); } return model;}// Stratified cross validationvoid svm_cross_validation(const svm_problem *prob, const svm_parameter *param, int nr_fold, double *target){ int i; int *fold_start = Malloc(int,nr_fold+1); int l = prob->l; int *perm = Malloc(int,l); int nr_class; if(param->svm_type == C_SVC || param->svm_type == NU_SVC) { int *start = NULL; int *label = NULL; int *count = NULL; svm_group_classes(prob,&nr_class,&label,&start,&count,perm); // random shuffle and then data grouped by fold using the array perm int *fold_count = Malloc(int,nr_fold); int c; int *index = Malloc(int,l); for(i=0;i<l;i++) index[i]=perm[i]; for (c=0; c<nr_class; c++) for(i=0;i<count[c];i++) { int j = i+rand()%(count[c]-i); swap(index[start[c]+j],index[start[c]+i]); } for(i=0;i<nr_fold;i++) { fold_count[i] = 0; for (c=0; c<nr_class;c++) fold_count[i]+=(i+1)*count[c]/nr_fold-i*count[c]/nr_fold; } fold_start[0]=0; for (i=1;i<=nr_fold;i++) fold_start[i] = fold_start[i-1]+fold_count[i-1]; for (c=0; c<nr_class;c++) for(i=0;i<nr_fold;i++) { int begin = start[c]+i*count[c]/nr_fold; int end = start[c]+(i+1)*count[c]/nr_fold; for(int j=begin;j<end;j++) { perm[fold_start[i]] = index[j]; fold_start[i]++; } } fold_start[0]=0; for (i=1;i<=nr_fold;i++) fold_start[i] = fold_start[i-1]+fold_count[i-1]; free(start); free(label); free(count); free(index); free(fold_count); } else { for(i=0;i<l;i++) perm[i]=i; for(i=0;i<l;i++) { int j = i+rand()%(l-i); swap(perm[i],perm[j]); } for(i=0;i<=nr_fold;i++) fold_start[i]=i*l/nr_fold; } for(i=0;i<nr_fold;i++) { int begin = fold_start[i]; int end = fold_start[i+1]; int j,k; struct svm_problem subprob; subprob.l = l-(end-begin); subprob.x = Malloc(struct svm_node*,subprob.l); subprob.y = Malloc(double,subprob.l); k=0; for(j=0;j<begin;j++) { subprob.x[k] = prob->x[perm[j]]; subprob.y[k] = prob->y[perm[j]]; ++k; } for(j=end;j<l;j++) { subprob.x[k] = prob->x[perm[j]]; subprob.y[k] = prob->y[perm[j]]; ++k; } struct svm_model *submodel = svm_train(&subprob,param); if(param->probability && (param->svm_type == C_SVC || param->svm_type == NU_SVC)) { double *prob_estimates=Malloc(double,svm_get_nr_class(submodel)); for(j=begin;j<end;j++) target[perm[j]] = svm_predict_probability(submodel,prob->x[perm[j]],prob_estimates); free(prob_estimates); } else for(j=begin;j<end;j++) target[perm[j]] = svm_predict(submodel,prob->x[perm[j]]); svm_destroy_model(submodel); free(subprob.x); free(subprob.y); } free(fold_start); free(perm); }int svm_get_svm_type(const svm_model *model){ return model->param.svm_type;}int svm_get_nr_class(const svm_model *model){ return model->nr_class;}void svm_get_labels(const svm_model *model, int* label){ if (model->label != NULL) for(int i=0;i<model->nr_class;i++) label[i] = model->label[i];}double svm_get_svr_probability(const svm_model *model){ if ((model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) && model->probA!=NULL) return model->probA[0]; else { info("Model doesn't contain information for SVR probability inference\n"); return 0; }}void svm_predict_values(const svm_model *model, const svm_node *x, double* dec_values){ if(model->param.svm_type == ONE_CLASS || model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) { double *sv_coef = model->sv_coef[0]; double sum = 0; for(int i=0;i<model->l;i++) sum += sv_coef[i] * Kernel::k_function(x,model->SV[i],model->param); sum -= model->rho[0]; *dec_values = sum; } else { int i; int nr_class = model->nr_class; int l = model->l; double *kvalue = Malloc(double,l); for(i=0;i<l;i++) kvalue[i] = Kernel::k_function(x,model->SV[i],model->param); int *start = Malloc(int,nr_class); start[0] = 0; for(i=1;i<nr_class;i++) start[i] = start[i-1]+model->nSV[i-1]; int p=0; int pos=0; for(i=0;i<nr_class;i++) for(int j=i+1;j<nr_class;j++) { double sum = 0; int si = start[i]; int sj = start[j]; int ci = model->nSV[i]; int cj = model->nSV[j]; int k; double *coef1 = model->sv_coef[j-1]; double *coef2 = model->sv_coef[i]; for(k=0;k<ci;k++) sum += coef1[si+k] * kvalue[si+k]; for(k=0;k<cj;k++) sum += coef2[sj+k] * kvalue[sj+k]; sum -= model->rho[p++]; dec_values[pos++] = sum; } free(kvalue); free(start); }}double svm_predict(const svm_model *model, const svm_node *x){ if(model->param.svm_type == ONE_CLASS || model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) { double res; svm_predict_values(model, x, &res); if(model->param.svm_type == ONE_CLASS) return (res>0)?1:-1; else return res; } else { int i; int nr_class = model->nr_class; double *dec_values = Malloc(double, nr_class*(nr_class-1)/2); svm_predict_values(model, x, dec_values); int *vote = Malloc(int,nr_class); for(i=0;i<nr_class;i++) vote[i] = 0; int pos=0; for(i=0;i<nr_class;i++) for(int j=i+1;j<nr_class;j++) { if(dec_values[pos++] > 0) ++vote[i]; else ++vote[j]; } int vote_max_idx = 0; for(i=1;i<nr_class;i++) if(vote[i] > vote[vote_max_idx]) vote_max_idx = i; free(vote); free(dec_values); return model->label[vote_max_idx]; }}double svm_predict_probability( const svm_model *model, const svm_node *x, double *prob_estimates){ if ((model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC) && model->probA!=NULL && model->probB!=NULL) { int i; int nr_class = model->nr_class; double *dec_values = Malloc(double, nr_class*(nr_class-1)/2); svm_predict_values(model, x, dec_values); double min_prob=1e-7; double **pairwise_prob=Malloc(double *,nr_class); for(i=0;i<nr_class;i++) pairwise_prob[i]=Malloc(double,nr_class); int k=0; for(i=0;i<nr_class;i++) for(int j=i+1;j<nr_class;j++) { pairwise_prob[i][j]=min(max(sigmoid_predict(dec_values[k],model->probA[k],model->probB[k]),min_prob),1-min_prob); pairwise_prob[j][i]=1-pairwise_prob[i][j]; k++; } multiclass_probability(nr_class,pairwise_prob,prob_estimates); int prob_max_idx = 0; for(i=1;i<nr_class;i++) if(prob_estimates[i] > prob_estimates[prob_max_idx]) prob_max_idx = i; for(i=0;i<nr_class;i++) free(pairwise_prob[i]); free(dec_values); free(pairwise_prob); return model->label[prob_max_idx]; } else return svm_predict(model, x);}const char *svm_type_table[] ={ "c_svc","nu_svc","one_class","epsilon_svr","nu_svr",NULL};const char *kernel_type_table[] ={// Canasai's addition begin "linear","polynomial","rbf","sigmoid","string",NULL// Canasai's addition end};int svm_save_model(const char *model_file_name, const svm_model *model){ FILE *fp = fopen(model_file_name,"w"); if(fp==NULL) return -1; const svm_parameter& param = model->param; fprintf(fp,"svm_type %s\n", svm_type_table[param.svm_type]); fprintf(fp,"kernel_type %s\n", kernel_type_table[param.kernel_type]); if(param.kernel_type == POLY || param.kernel_type == STRING) fprintf(fp,"degree %g\n", param.degree); if(param.kernel_type == POLY || param.kernel_type == RBF || param.kernel_type == SIGMOID || param.kernel_type == STRING) fprintf(fp,"gamma %g\n", param.gamma); if(param.kernel_type == POLY || param.kernel_type == SIGMOID || param.kernel_type == STRING) fprintf(fp,"coef0 %g\n", param.coef0); int nr_class = model->nr_class; int l = model->l; fprintf(fp, "nr_class %d\n", nr_class); fprintf(fp, "total_sv %d\n",l); { fprintf(fp, "rho"); for(int i=0;i<nr_class*(nr_class-1)/2;i++) fprintf(fp," %g",model->rho[i]); fprintf(fp, "\n"); } if(model->label) { fprintf(fp, "label"); for(int i=0;i<nr_class;i++) fprintf(fp," %d",model->label[i]); fprintf(fp, "\n"); }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -