⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lr.h

📁 ADaM is a data mining and image processing toolkit
💻 H
字号:
/*  Logistic Regression using Truncated Iteratively Re-weighted Least Squares  (includes several programs)  Copyright (C) 2005  Paul Komarek  This program is free software; you can redistribute it and/or modify  it under the terms of the GNU General Public License as published by  the Free Software Foundation; either version 2 of the License, or  (at your option) any later version.  This program is distributed in the hope that it will be useful,  but WITHOUT ANY WARRANTY; without even the implied warranty of  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the  GNU General Public License for more details.  You should have received a copy of the GNU General Public License  along with this program; if not, write to the Free Software  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA  Author: Paul Komarek, komarek@cmu.edu  Alternate contact: Andrew Moore, awm@cs.cmu.edu*//*   File:        lr.h   Author:      Paul Komarek   Created:     Wed Mar  5 18:01:21 EST 2003   Description: Logistic regression implmentation.   Copyright 2003, The Auton Lab, CMU*/#ifndef LR_H#define LR_H#include "amdyv.h"#include "amdym.h"#include "spardat.h"#include "lin_conjgrad.h"/***********************************************************************//* LR_OPTIONS STRUCT                                                   *//***********************************************************************/typedef struct lr_options_struct {  double rrlambda;  double lreps;  int    lrmax;  double cgdeveps;  double cgeps;  int    cgmax;  int    cgbinit;     /* Set automatically. */  int    cgwindow;    /* Number of bad iterations allowed. */  double cgdecay;     /* Factor worse than best-seen so far that is allowed. */} lr_options;lr_options *mk_lr_options(void);lr_options *mk_copy_lr_options( lr_options *opts);void free_lr_options( lr_options *opts);void parse_lr_options( lr_options *opts, int argc, char **argv);void check_lr_options( lr_options *opts, int argc, char **argv);char *mk_string_from_lr_options( lr_options *opts, int argc, char **argv);void fprintf_lr_options( FILE *f, char *pre, lr_options *opts,			 int argc, char **argv, char *post);void write_lr_options( lr_options *opts, int argc, char **argv);/***********************************************************************//* LR_STATE                                                            *//***********************************************************************/typedef struct lr_state_struct {  double  b0;    /* Constant factor. */  dyv     *b;    /* (beta) Current estimates of regression coeffs.  Note		    that b[1] is beta[1] in most descriptions of logistic		    model.  The indices of b correspond to those of		    X or M, whichever is not NULL. */  /* The stuff below is used during iterations. */  dyv     *n;    /* (eta)  Predicted values in linearized model. */  dyv     *u;    /* (mu)   Predicted values. */  dyv     *w;    /* Weights. */  dyv     *z;    /* Adjusted outputs in linearized model. */} lr_state;/* Prototype for mk_lr_state() occurs after lr_train is typedef'd. *//* lr_state *mk_lr_state( lr_train *data, lr_options *opts); */lr_state *mk_copy_lr_state( lr_state *lrs);void fprintf_lr_state_brief( FILE *f, char *pre, lr_state *lrs);void fprintf_lr_state( FILE *f, char *pre, lr_state *lrs);void lr_state_overwrite_b( lr_state *lrs, dyv *initb);void free_lr_state( lr_state *lrs);/***********************************************************************//* LR_STATEARR STRUCT                                                   *//***********************************************************************/typedef struct lr_statearr_struct {  int size;  lr_state **arr;} lr_statearr;lr_statearr *mk_array_of_null_lr_states( int size);lr_state *lr_statearr_ref( lr_statearr *lrsarr, int index);void lr_statearr_set( lr_statearr *lrsarr, int index, lr_state *lrs);void free_lr_statearr( lr_statearr *lrsarr);/***********************************************************************//* LR_TRAIN STRUCT                                                     *//***********************************************************************/typedef struct lr_train_struct {  /* Parameters. */  lr_options *opts;  /* One of the two following fields should be NULL. */  const spardat *X;    /* sparse form of design matrix and outputs */  dym   *M;            /* dense form of design matrix */  int numatts;   /* Number of factors including constant factor. */  int numrows;  dyv     *y;     /* outputs as doubles */  double likesat; /* likelihood of saturated model, i.e. with u=y. */  lr_state *lrs;  /* LR state structure, used during iterations. */} lr_train;#define lrt_b0_ref(lrt)              ((lrt)->lrs->b0)#define lrt_b_ref(lrt)               ((lrt)->lrs->b)#define lrt_n_ref(lrt)               ((lrt)->lrs->n)#define lrt_u_ref(lrt)               ((lrt)->lrs->u)#define lrt_w_ref(lrt)               ((lrt)->lrs->w)#define lrt_z_ref(lrt)               ((lrt)->lrs->z)#define lrt_b0_set(lrt,val)          ((lrt)->lrs->b0 = val)#define lrt_b_set(lrt,dv)            ((lrt)->lrs->b = dv)#define lrt_n_set(lrt,dv)            ((lrt)->lrs->n = dv)#define lrt_u_set(lrt,dv)            ((lrt)->lrs->u = dv)#define lrt_w_set(lrt,dv)            ((lrt)->lrs->w = dv)#define lrt_z_set(lrt,dv)            ((lrt)->lrs->z = dv)/* Defined here because it depends on lr_train. */lr_state *mk_lr_state( lr_train *data, lr_options *opts);lr_train *mk_lr_train_from_dym( dym *factors, dyv *outputs, lr_options *opts);lr_train *mk_lr_train_from_spardat( spardat *X, lr_options *opts);lr_train *mk_copy_lr_train( const lr_train *source);void free_lr_train( lr_train *lrt);void fprintf_lr_train( FILE *f, char *pre, lr_train *lrt);void lr_train_overwrite_b( lr_train *lrt, dyv *initb);int lr_train_iterate( lr_train *lrt);double lr_train_deviance( lr_train *lrt);void lr_train_split_b( dyv *b, lr_train *lrt);void lr_train_join_b( lr_train *lrt, double b0, dyv *b);void lr_train_update_w( lr_train *lrt);void lr_train_update_z( lr_train *lrt);int  lr_train_update_b( lr_train *lrt);void lr_train_update_n( lr_train *lrt);void lr_train_update_u( lr_train *lrt);int lr_train_iterate( lr_train *lrt);/***********************************************************************//* LR_PREDICT                                                          *//***********************************************************************/typedef struct lr_predict_struct {  double b0;  dyv *b;} lr_predict;lr_predict *mk_lr_predict( double b0, dyv *b);lr_predict *mk_copy_lr_predict( lr_predict *lrp);void free_lr_predict( lr_predict *lrp);double lr_predict_predict( ivec *posatts, dyv *attvals, lr_predict *lrp);/***********************************************************************//* UTILITY                                                             *//***********************************************************************//* Predictions. */double lr_prediction( double b0, dyv *b, ivec *posatts, dyv *attvals);/* Computing n (eta). */void lr_compute_n_from_spardat( const spardat *X, double b0, dyv *b, dyv *n);void lr_compute_n_from_dym( const dym *M, double b0, dyv *b, dyv *n);void lr_n_from_spardat( const spardat *X, double b0, dyv *b, dyv *n);void lr_n_from_dym( const dym *M, double b0, dyv *b, dyv *n);/* Computing u (mu). */void lr_compute_u_from_n( dyv *n, dyv *u);/* Computing b (beta). */dyv *mk_lr_update_b_conjugate_gradient_helper( lr_train *lrt, double cgeps,                                               double cgdeveps,                                               int maxiters, int *iters,                                               dyv *initx);/* Likelihood and Deviance. */double lr_log_likelihood_basic( dyv *y, dyv *u);double lr_log_likelihood_from_deviance( double deviance, double likesat);double lr_deviance_from_log_likelihood( double likelihood, double likesat);double lr_deviance_basic( dyv *y, dyv *u);double lr_deviance_from_spardat_b( const spardat *X, dyv *y, double b0,                                   dyv *b);double lr_deviance_from_dym_b( const dym *M, dyv *y, double b0, dyv *b);double lr_deviance_from_cg( lr_train *lrt, conjgrad *cg);/* Exactly one of posatts and attvals should be NULL. */dyv *mk_lr_XtWXv_dyv( const lr_train *lrt, const dyv *v);dyv *mk_lr_XtWz_dyv( const lr_train *lrt);/***********************************************************************//* CONJGRAD HELPERS                                                    *//***********************************************************************//* Copy [b0, b1, ..., bn] into lrt->b0 and lrt->b. */void lr_copy_full_b_to_lr_train( dyv *sourceb, lr_train *lrt);void lr_copy_cgs_x_to_lr_train( cgstate *cgs, lr_train *lrt);void *lr_cg_mk_copy_userdata( const void *userdata);void lr_cg_free_userdata( void *userdata);void lr_cg_multA( const dyv *v, dyv *result, void *userdata);/***********************************************************************//* LR LEARN AND PREDICT                                                *//***********************************************************************//* Exactly one of X and ds should be NULL. */lr_train *mk_lr_train( spardat *X, dym *factors, dyv *outputs,                       dyv *initb, lr_options *opts);/***********************************************************************//* INOUT                                                               *//***********************************************************************/void out_lr_predict( PFILE *f, lr_predict *lrp);lr_predict *mk_in_lr_predict( PFILE *f);#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -