📄 svm_c_builder.cpp
字号:
active_size++;
++k; // look at the newcomer
}
}
double Solver_NU::calculate_rho()
{
int nr_free1 = 0,nr_free2 = 0;
double ub1 = INF, ub2 = INF;
double lb1 = -INF, lb2 = -INF;
double sum_free1 = 0, sum_free2 = 0;
for(int i=0;i<active_size;i++)
{
if(y[i]==+1)
{
if(is_lower_bound(i))
ub1 = min(ub1,G[i]);
else if(is_upper_bound(i))
lb1 = max(lb1,G[i]);
else
{
++nr_free1;
sum_free1 += G[i];
}
}
else
{
if(is_lower_bound(i))
ub2 = min(ub2,G[i]);
else if(is_upper_bound(i))
lb2 = max(lb2,G[i]);
else
{
++nr_free2;
sum_free2 += G[i];
}
}
}
double r1,r2;
if(nr_free1 > 0)
r1 = sum_free1/nr_free1;
else
r1 = (ub1+lb1)/2;
if(nr_free2 > 0)
r2 = sum_free2/nr_free2;
else
r2 = (ub2+lb2)/2;
si->r = (r1+r2)/2;
return (r1-r2)/2;
}
//
// Q matrices for various formulations
//
class SVC_Q: public Kernel
{
public:
SVC_Q(const svm_problem& prob, const svm_parameter& param, const schar *y_)
:Kernel(prob.l, prob.x, param)
{
clone(y,y_,prob.l);
cache = new Cache(prob.l,(int)(param.cache_size*(1<<20)));
QD = new Qfloat[prob.l];
for(int i=0;i<prob.l;i++)
QD[i]= (Qfloat)(this->*kernel_function)(i,i);
}
Qfloat *get_Q(int i, int len) const
{
Qfloat *data;
int start;
if((start = cache->get_data(i,&data,len)) < len)
{
for(int j=start;j<len;j++)
data[j] = (Qfloat)(y[i]*y[j]*(this->*kernel_function)(i,j));
}
return data;
}
Qfloat *get_QD() const
{
return QD;
}
void swap_index(int i, int j) const
{
cache->swap_index(i,j);
Kernel::swap_index(i,j);
swap(y[i],y[j]);
swap(QD[i],QD[j]);
}
~SVC_Q()
{
delete[] y;
delete cache;
delete[] QD;
}
private:
schar *y;
Cache *cache;
Qfloat *QD;
};
class ONE_CLASS_Q: public Kernel
{
public:
ONE_CLASS_Q(const svm_problem& prob, const svm_parameter& param)
:Kernel(prob.l, prob.x, param)
{
cache = new Cache(prob.l,(int)(param.cache_size*(1<<20)));
QD = new Qfloat[prob.l];
for(int i=0;i<prob.l;i++)
QD[i]= (Qfloat)(this->*kernel_function)(i,i);
}
Qfloat *get_Q(int i, int len) const
{
Qfloat *data;
int start;
if((start = cache->get_data(i,&data,len)) < len)
{
for(int j=start;j<len;j++)
data[j] = (Qfloat)(this->*kernel_function)(i,j);
}
return data;
}
Qfloat *get_QD() const
{
return QD;
}
void swap_index(int i, int j) const
{
cache->swap_index(i,j);
Kernel::swap_index(i,j);
swap(QD[i],QD[j]);
}
~ONE_CLASS_Q()
{
delete cache;
delete[] QD;
}
private:
Cache *cache;
Qfloat *QD;
};
class SVR_Q: public Kernel
{
public:
SVR_Q(const svm_problem& prob, const svm_parameter& param)
:Kernel(prob.l, prob.x, param)
{
l = prob.l;
cache = new Cache(l,(int)(param.cache_size*(1<<20)));
QD = new Qfloat[2*l];
sign = new schar[2*l];
index = new int[2*l];
for(int k=0;k<l;k++)
{
sign[k] = 1;
sign[k+l] = -1;
index[k] = k;
index[k+l] = k;
QD[k]= (Qfloat)(this->*kernel_function)(k,k);
QD[k+l]=QD[k];
}
buffer[0] = new Qfloat[2*l];
buffer[1] = new Qfloat[2*l];
next_buffer = 0;
}
void swap_index(int i, int j) const
{
swap(sign[i],sign[j]);
swap(index[i],index[j]);
swap(QD[i],QD[j]);
}
Qfloat *get_Q(int i, int len) const
{
Qfloat *data;
int real_i = index[i];
if(cache->get_data(real_i,&data,l) < l)
{
for(int j=0;j<l;j++)
data[j] = (Qfloat)(this->*kernel_function)(real_i,j);
}
// reorder and copy
Qfloat *buf = buffer[next_buffer];
next_buffer = 1 - next_buffer;
schar si = sign[i];
for(int j=0;j<len;j++)
buf[j] = si * sign[j] * data[index[j]];
return buf;
}
Qfloat *get_QD() const
{
return QD;
}
~SVR_Q()
{
delete cache;
delete[] sign;
delete[] index;
delete[] buffer[0];
delete[] buffer[1];
delete[] QD;
}
private:
int l;
Cache *cache;
schar *sign;
int *index;
mutable int next_buffer;
Qfloat *buffer[2];
Qfloat *QD;
};
//
// construct and solve various formulations
//
static void solve_c_svc(
const svm_problem *prob, const svm_parameter* param,
double *alpha, Solver::SolutionInfo* si, double Cp, double Cn)
{
int l = prob->l;
double *minus_ones = new double[l];
schar *y = new schar[l];
int i;
for(i=0;i<l;i++)
{
alpha[i] = 0;
minus_ones[i] = -1;
if(prob->y[i] > 0) y[i] = +1; else y[i]=-1;
}
Solver s;
s.Solve(l, SVC_Q(*prob,*param,y), minus_ones, y,
alpha, Cp, Cn, param->eps, si, param->shrinking);
double sum_alpha=0;
for(i=0;i<l;i++)
sum_alpha += alpha[i];
if (Cp==Cn)
info("nu = %f\n", sum_alpha/(Cp*prob->l));
for(i=0;i<l;i++)
alpha[i] *= y[i];
delete[] minus_ones;
delete[] y;
}
static void solve_nu_svc(
const svm_problem *prob, const svm_parameter *param,
double *alpha, Solver::SolutionInfo* si)
{
int i;
int l = prob->l;
double nu = param->nu;
schar *y = new schar[l];
for(i=0;i<l;i++)
if(prob->y[i]>0)
y[i] = +1;
else
y[i] = -1;
double sum_pos = nu*l/2;
double sum_neg = nu*l/2;
for(i=0;i<l;i++)
if(y[i] == +1)
{
alpha[i] = min(1.0,sum_pos);
sum_pos -= alpha[i];
}
else
{
alpha[i] = min(1.0,sum_neg);
sum_neg -= alpha[i];
}
double *zeros = new double[l];
for(i=0;i<l;i++)
zeros[i] = 0;
Solver_NU s;
s.Solve(l, SVC_Q(*prob,*param,y), zeros, y,
alpha, 1.0, 1.0, param->eps, si, param->shrinking);
double r = si->r;
info("C = %f\n",1/r);
for(i=0;i<l;i++)
alpha[i] *= y[i]/r;
si->rho /= r;
si->obj /= (r*r);
si->upper_bound_p = 1/r;
si->upper_bound_n = 1/r;
delete[] y;
delete[] zeros;
}
static void solve_one_class(
const svm_problem *prob, const svm_parameter *param,
double *alpha, Solver::SolutionInfo* si)
{
int l = prob->l;
double *zeros = new double[l];
schar *ones = new schar[l];
int i;
int n = (int)(param->nu*prob->l); // # of alpha's at upper bound
for(i=0;i<n;i++)
alpha[i] = 1;
if(n<prob->l)
alpha[n] = param->nu * prob->l - n;
for(i=n+1;i<l;i++)
alpha[i] = 0;
for(i=0;i<l;i++)
{
zeros[i] = 0;
ones[i] = 1;
}
Solver s;
s.Solve(l, ONE_CLASS_Q(*prob,*param), zeros, ones,
alpha, 1.0, 1.0, param->eps, si, param->shrinking);
delete[] zeros;
delete[] ones;
}
static void solve_epsilon_svr(
const svm_problem *prob, const svm_parameter *param,
double *alpha, Solver::SolutionInfo* si)
{
int l = prob->l;
double *alpha2 = new double[2*l];
double *linear_term = new double[2*l];
schar *y = new schar[2*l];
int i;
for(i=0;i<l;i++)
{
alpha2[i] = 0;
linear_term[i] = param->p - prob->y[i];
y[i] = 1;
alpha2[i+l] = 0;
linear_term[i+l] = param->p + prob->y[i];
y[i+l] = -1;
}
Solver s;
s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y,
alpha2, param->C, param->C, param->eps, si, param->shrinking);
double sum_alpha = 0;
for(i=0;i<l;i++)
{
alpha[i] = alpha2[i] - alpha2[i+l];
sum_alpha += fabs(alpha[i]);
}
info("nu = %f\n",sum_alpha/(param->C*l));
delete[] alpha2;
delete[] linear_term;
delete[] y;
}
static void solve_nu_svr(
const svm_problem *prob, const svm_parameter *param,
double *alpha, Solver::SolutionInfo* si)
{
int l = prob->l;
double C = param->C;
double *alpha2 = new double[2*l];
double *linear_term = new double[2*l];
schar *y = new schar[2*l];
int i;
double sum = C * param->nu * l / 2;
for(i=0;i<l;i++)
{
alpha2[i] = alpha2[i+l] = min(sum,C);
sum -= alpha2[i];
linear_term[i] = - prob->y[i];
y[i] = 1;
linear_term[i+l] = prob->y[i];
y[i+l] = -1;
}
Solver_NU s;
s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y,
alpha2, C, C, param->eps, si, param->shrinking);
info("epsilon = %f\n",-si->r);
for(i=0;i<l;i++)
alpha[i] = alpha2[i] - alpha2[i+l];
delete[] alpha2;
delete[] linear_term;
delete[] y;
}
//
// decision_function
//
struct decision_function
{
double *alpha;
double rho;
};
decision_function svm_train_one(
const svm_problem *prob, const svm_parameter *param,
double Cp, double Cn)
{
double *alpha = Malloc(double,prob->l);
Solver::SolutionInfo si;
switch(param->svm_type)
{
case C_SVC:
solve_c_svc(prob,param,alpha,&si,Cp,Cn);
break;
case NU_SVC:
solve_nu_svc(prob,param,alpha,&si);
break;
case ONE_CLASS:
solve_one_class(prob,param,alpha,&si);
break;
case EPSILON_SVR:
solve_epsilon_svr(prob,param,alpha,&si);
break;
case NU_SVR:
solve_nu_svr(prob,param,alpha,&si);
break;
}
info("obj = %f, rho = %f\n",si.obj,si.rho);
// output SVs
int nSV = 0;
int nBSV = 0;
for(int i=0;i<prob->l;i++)
{
if(fabs(alpha[i]) > 0)
{
++nSV;
if(prob->y[i] > 0)
{
if(fabs(alpha[i]) >= si.upper_bound_p)
++nBSV;
}
else
{
if(fabs(alpha[i]) >= si.upper_bound_n)
++nBSV;
}
}
}
info("nSV = %d, nBSV = %d\n",nSV,nBSV);
decision_function f;
f.alpha = alpha;
f.rho = si.rho;
return f;
}
//
// svm_model
//
struct svm_model
{
svm_parameter param; // parameter
int nr_class; // number of classes, = 2 in regression/one class svm
int l; // total #SV
svm_node **SV; // SVs (SV[l])
double **sv_coef; // coefficients for SVs in decision functions (sv_coef[n-1][l])
double *rho; // constants in decision functions (rho[n*(n-1)/2])
double *probA; // pariwise probability information
double *probB;
// for classification only
int *label; // label of each class (label[n])
int *nSV; // number of SVs for each class (nSV[n])
// nSV[0] + nSV[1] + ... + nSV[n-1] = l
// XXX
int free_sv; // 1 if svm_model is created by svm_load_model
// 0 if svm_model is created by svm_train
};
// Platt's binary SVM Probablistic Output: an improvement from Lin et al.
void sigmoid_train(
int l, const double *dec_values, const double *labels,
double& A, double& B)
{
double prior1=0, prior0 = 0;
int i;
for (i=0;i<l;i++)
if (labels[i] > 0) prior1+=1;
else prior0+=1;
int max_iter=100; // Maximal number of iterations
double min_step=1e-10; // Minimal step taken in line search
double sigma=1e-3; // For numerically strict PD of Hessian
double eps=1e-5;
double hiTarget=(prior1+1.0)/(prior1+2.0);
double loTarget=1/(prior0+2.0);
double *t=Malloc(double,l);
double fApB,p,q,h11,h22,h21,g1,g2,det,dA,dB,gd,stepsize;
double newA,newB,newf,d1,d2;
int iter;
// Initial Point and Initial Fun Value
A=0.0; B=log((prior0+1.0)/(prior1+1.0));
double fval = 0.0;
for (i=0;i<l;i++)
{
if (labels[i]>0) t[i]=hiTarget;
else t[i]=loTarget;
fApB = dec_values[i]*A+B;
if (fApB>=0)
fval += t[i]*fApB + log(1+exp(-fApB));
else
fval += (t[i] - 1)*fApB +log(1+exp(fApB));
}
for (iter=0;iter<max_iter;iter++)
{
// Update Gradient and Hessian (use H' = H + sigma I)
h11=sigma; // numerically ensures strict PD
h22=sigma;
h21=0.0;g1=0.0;g2=0.0;
for (i=0;i<l;i++)
{
fApB = dec_values[i]*A+B;
if (fApB >= 0)
{
p=exp(-fApB)/(1.0+exp(-fApB));
q=1.0/(1.0+exp(-fApB));
}
else
{
p=1.0/(1.0+exp(fApB));
q=exp(fApB)/(1.0+exp(fApB));
}
d2=p*q;
h11+=dec_values[i]*dec_values[i]*d2;
h22+=d2;
h21+=dec_values[i]*d2;
d1=t[i]-p;
g1+=dec_values[i]*d1;
g2+=d1;
}
// Stopping Criteria
if (fabs(g1)<eps && fabs(g2)<eps)
break;
// Finding Newton direction: -inv(H') * g
det=h11*h22-h21*h21;
dA=-(h22*g1 - h21 * g2) / det;
dB=-(-h21*g1+ h11 * g2) / det;
gd=g1*dA+g2*dB;
stepsize = 1; // Line Search
while (stepsize >= min_step)
{
newA = A + stepsize * dA;
newB = B + stepsize * dB;
// New function value
newf = 0.0;
for (i=0;i<l;i++)
{
fApB = dec_values[i]*newA+newB;
if (fApB >= 0)
newf += t[i]*fApB + log(1+exp(-fApB));
else
newf += (t[i] - 1)*fApB +log(1+exp(fApB));
}
// Check sufficient decrease
if (newf<fval+0.0001*stepsize*gd)
{
A=newA;B=newB;fval=newf;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -