⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cstartup.s

📁 ARM入门的好帮手.包含了从简单到相对较复杂的程序.
💻 S
📖 第 1 页 / 共 2 页
字号:
;- That's important to perform this operation before Remap in order to guarantee
;- that the core has valid vectors at any time during the remap operation.
;- Note: There are only 5 offsets as the vectoring is used.
;- ICE note : In this code only the start address value is changed if you use 
;- without Semihosting. 
;-  Before Remap the internal RAM it's 0x300000
;-  After  Remap the internal RAM it's 0x000000
;-      Remap it's already executed it's no possible to write to 0x300000.
;------------------------------------------------------------------------------
;- Copy the ARM exception vectors
  
                movs        r0, pc, LSR #20     ; if 12 highest pc bits are not 0
                movne       r8, #0              ; @ of the hard vector in internal RAM
                moveq       r8, #RAM_BASE       ; @ of the hard vector in internal RAM

                add     r9, pc,#-(8+.-VectorTable)  ; @ where to read values (relative)
                ldmia   r9!, {r0-r7}            ; read 8 vectors
                stmia   r8!, {r0-r7}            ; store them
                ldmia   r9!, {r0-r4}            ; read 5 absolute handler addresses 
                stmia   r8!, {r0-r4}            ; store them

;------------------------------------------------------------------------------
;- Initialise the Memory Controller
;----------------------------------
;- That's principaly the Remap Command. Actually, all the External Bus 
;- Interface is configured with some instructions and the User Interface Image 
;- as described above. The jump "mov pc, r12" could be unread as it is after
;- located after the Remap but actually it is thanks to the Arm core pipeline.
;- The IniTableEBI addressing must be relative .
;- The PtInitRemap must be absolute as the processor jumps at this address 
;- immediatly after the Remap is performed.
;- Note also that the EBI base address is loaded in r11 by the "ldmia".
;- ICE note :For ICE debug these values already set by the boot function and the 
;- Remap it's already executed it's no need to set still.
;------------------------------------------------------------------------------
;- Copy the Image of the Memory Controller
                sub     r10, pc,#(8+.-InitTableEBI) ; get the address of the chip select register image
                ldr     r12, PtInitRemap        ; get the real jump address ( after remap )
                IF  :DEF:AT91_DEBUG_NONE        ; remap address 
                ldr     r0,= 0x000FFFFF         ; this code run to the flash adress but linked 
                and     r12,r12,r0              ; at Ram adress 
                ldr     r0,= FLASH_BASE
                add     r12,r12,r0
                ENDIF
;- Copy Chip Select Register Image to Memory Controller and command remap
                ldmia   r10!, {r0-r9,r11}       ; load the complete image and the EBI base
                stmia   r11!, {r0-r9}           ; store the complete image with the remap command

;- Jump to ROM at its new address
                mov     pc, r12                 ; jump and break the pipeline

PtInitRemap
                DCD     InitRemap              ; address where to jump after REMAP 

;------------------------------------------------------------------------------
;- The Reset Handler after Remap
;-------------------------------
;- From here, the code is continous execute from its link address.
;------------------------------------------------------------------------------
InitRemap

;------------------------------------------------------------------------------
;- Stack Sizes Definition
;------------------------
;- Interrupt Stack requires 3 words x 8 priority level x 4 bytes when using
;- the vectoring. This assume that the IRQ_ENTRY/IRQ_EXIT macro are used. 
;- The Interrupt Stack must be adjusted depending on the interrupt handlers.
;- Fast Interrupt is the same than Interrupt without priority level.
;- Other stacks are defined by default to save one word each.
;- The System stack size is not defined and is limited by the free internal 
;- SRAM. 
;- User stack size is not defined and is limited by the free external SRAM.
;------------------------------------------------------------------------------

IRQ_STACK_SIZE      EQU     (3*8*4)     ; 3 words per interrupt priority level
FIQ_STACK_SIZE      EQU     (3*4)       ; 3 words
ABT_STACK_SIZE      EQU     (1*4)       ; 1 word
UND_STACK_SIZE      EQU     (1*4)       ; 1 word

;------------------------------------------------------------------------------
;- Top of Stack Definition
;-------------------------
;- Fast Interrupt, Interrupt, Abort, Undefined and Supervisor Stack are located
;- at the top of internal memory in order to speed the exception handling 
;- context saving and restoring.
;- User (Application, C) Stack is located at the top of the external memory.
;------------------------------------------------------------------------------

TOP_APPLICATION_STACK_63_55   EQU     0x2040000          ; Defined in Target
TOP_APPLICATION_STACK_40      EQU     0x2080000          ; Defined in Target

;------------------------------------------------------------------------------
;- Setup the stack for each mode
;-------------------------------

                ldr     r2, =SF_BASE                ; Get the SF_BASE.SF_CIDR
                ldr     r2, [R2,#SF_CIDR]
                ldr     r1, =SF_VDSIZ_MASK_SHIFT    ; Get Mask Ram size
                and     r0,R1,R2, lsr #6            ; Get the Internal Ram size
                
;- Set up Fast Interrupt Mode and set FIQ Mode Stack
                msr     CPSR_c, #ARM_MODE_FIQ:OR:I_BIT:OR:F_BIT
                mov     r13, r0                     ; Init stack FIQ
                sub     r0, r0, #FIQ_STACK_SIZE

;- Set up Interrupt Mode and set IRQ Mode Stack
                msr     CPSR_c, #ARM_MODE_IRQ:OR:I_BIT:OR:F_BIT
                mov     r13, r0                     ; Init stack IRQ
                sub     r0, r0, #IRQ_STACK_SIZE

;- Set up Abort Mode and set Abort Mode Stack
                msr     CPSR_c, #ARM_MODE_ABORT:OR:I_BIT:OR:F_BIT
                mov     r13, r0                     ; Init stack Abort
                sub     r0, r0, #ABT_STACK_SIZE

;- Set up Undefined Instruction Mode and set Undef Mode Stack
                msr     CPSR_c, #ARM_MODE_UNDEF:OR:I_BIT:OR:F_BIT
                mov     r13, r0                     ; Init stack Undef
                sub     r0, r0, #UND_STACK_SIZE

;- Set up Supervisor Mode and set Supervisor Mode Stack
                msr     CPSR_c, #ARM_MODE_SVC:OR:I_BIT:OR:F_BIT
                mov     r13, r0                     ; Init stack Sup

;------------------------------------------------------------------------------
;- Setup Application Operating Mode and Enable the interrupts
;------------------------------------------------------------
;- System Mode is selected first and the stack is setup. This allows to prevent 
;- any interrupt occurence while the User is not initialized. System Mode is
;- used as the interrupt enabling would be avoided from User Mode (CPSR cannot
;- be written while the core is in User Mode).
;------------------------------------------------------------------------------
                msr     CPSR_c, #ARM_MODE_USER      ; set User mode
                ldr     r13, =TOP_APPLICATION_STACK_63_55 ; Init stack User
                ldr     r2, =SF_BASE                ; Get the SF_BASE.SF_CIDR
                ldr     r2, [R2,#SF_CIDR]
                ldr     r1, =SF_ARCH                ; Get Architecture Mask
                and     r1,R1,R2                    ; Get the Internal Ram size
                ldr     R2, =SF_ARCH_AT91x40
                cmp     R1,R2
                ldreq   r13, =TOP_APPLICATION_STACK_40
    ; Get Mask Ram size


;------------------------------------------------------------------------------
;- Copy the code in external RAM
;--------------------------------
;- Following labels are automatically generated by the linker. 
;- RO: Read-only = the code
;- RW: Read Write = the data pre-initialized and zero-initialized.
;- ZI: Zero-Initialized.
;------------------------------------------------------------------------------
; Application kinked and run in RAM copy Flash to RAM
                IMPORT      |C$$code$$Base| 

                IMPORT      |Image$$RO$$Limit|      ; End of ROM code (=start of ROM data)
                IMPORT      |Image$$RW$$Base|       ; Base of RAM to initialise
                IMPORT      |Image$$ZI$$Base|       ; Base and limit of area

                ldr        r0,=EXT_SRAM_BASE
                ldr        r1,=FLASH_BASE           ; Flash address before remap

                ldr        r3,= |Image$$ZI$$Base|
                ldr        r2,= |Image$$RW$$Base|
                sub        r3,r3,r2                 ; r3 = size const char
                ldr        r2,= |Image$$RO$$Limit|
                add        r3,r2,r3                 ; r3 Total data size
                
                IF  :DEF:AT91_DEBUG_NONE            ; Copy flash to RAM
LoopCode        cmp        r0, r3                   
                ldrcc      r2, [r1], #4
                strcc      r2, [r0], #4
                bcc        LoopCode
                ENDIF
                
;------------------------------------------------------------------------------
;- Initialise C variables
;------------------------
;- Following labels are automatically generated by the linker. 
;- RO: Read-only = the code
;- RW: Read Write = the data pre-initialized and zero-initialized.
;- ZI: Zero-Initialized.
;- Pre-initialization values are located after the code area in the image.
;- Zero-initialized datas are mapped after the pre-initialized.
;- Note on the Data position : 
;- If using the ARMSDT, when no -rw-base option is used for the linker, the 
;- data area is mapped after the code. You can map the data either in internal
;- SRAM ( -rw-base=0x40 or 0x34) or in external SRAM ( -rw-base=0x2000000 ).
;- Note also that to improve the code density, the pre_initialized data must 
;- be limited to a minimum.
;------------------------------------------------------------------------------


                IMPORT      |Image$$RO$$Limit|      ; End of ROM code (=start of ROM data)
                IMPORT      |Image$$RW$$Base|       ; Base of RAM to initialise
                IMPORT      |Image$$ZI$$Base|       ; Base and limit of area
                IMPORT      |Image$$ZI$$Limit|      ; to zero initialise

                ldr         r0, =|Image$$RO$$Limit| ; Get pointer to ROM data
                ldr         r1, =|Image$$RW$$Base|  ; and RAM copy
                ldr         r3, =|Image$$ZI$$Base|  ; Zero init base => top of initialised data
                cmp         r0, r1                  ; Check that they are different
                beq         NoRW
LoopRw          cmp         r1, r3                  ; Copy init data
                ldrcc       r2, [r0], #4
                strcc       r2, [r1], #4
                bcc         LoopRw
NoRW            ldr         r1, =|Image$$ZI$$Limit| ; Top of zero init segment
                mov         r2, #0
LoopZI          cmp         r3, r1                  ; Zero init
                strcc       r2, [r3], #4
                bcc         LoopZI
                

;------------------------------------------------------------------------------
;- Branch on C code Main function (with interworking)
;----------------------------------------------------
;- Branch must be performed by an interworking call as either an ARM or Thumb 
;- main C function must be supported. This makes the code not position-
;- independant. A Branch with link would generate errors 
;------------------------------------------------------------------------------
                IMPORT      main

                ldr         r0, =main
                mov         lr, pc
                bx          r0
                
;------------------------------------------------------------------------------
;- Loop for ever
;---------------
;- End of application. Normally, never occur.
;- Could jump on Software Reset ( B 0x0 ).
;------------------------------------------------------------------------------
End
                b           End
                
; Call __low_level_init to perform initialization before initializing
; AIC and calling main.
; Pll Initialization 
;----------------------------------------------------------------------
__low_level_init

;- Speed up the System Frequency.
;---------------------------------
                ldr     r0, =0x002F0002             ; MOSCEN = 1, OSCOUNT = 47  (1.4ms/30祍)
                ldr     r1, =APMC_BASE              ; Get the APMC Base Address
                str     r0, [r1, #APMC_CGMR]        ; Store the configuration of the Clock Generator

;- Reading the APMC Status register to detect when the oscillator is stabilized
;------------------------------------------------------------------------------
                mov     r4, #APMC_MOSCS
MoscsLoop
                ldr     r2, [r1, #APMC_SR]
                and     r2, r4,r2
                cmp     r2, #APMC_MOSCS
                bne     MoscsLoop

;- Commuting from Slow Clock to Main Oscillator (16Mhz)
;------------------------------------------------------
                ldr     r0, =0x002F4002             ; MOSCEN = 1, OSCOUNT = 47  (1.4ms/30祍)
                str     r0, [r1, #APMC_CGMR]        ; Store the configuration of the Clock Generator

;-Setup the PLL
;---------------
                ldr     r0, =0x032F4102             ; MUL = 1, PLLCOUNT = 3, CSS = 1
                str     r0, [r1, #APMC_CGMR]        ; Store the configuration of the Clock Generator

;- Reading the APMC Status register to detect when the PLL is stabilized
;-----------------------------------------------------------------------
                mov     r4, #APMC_PLL_LOCK
Pll_Loop
                ldr     r3, [r1, #APMC_SR]
                and     r3, r4,r3
                cmp     r3, #APMC_PLL_LOCK
                bne     Pll_Loop

;- Commuting from 16Mhz to PLL @ 32MHz
;--------------------------------------
                ldr     r0, =0x032F8102             ; CSS = 2, MUL = 1
                str     r0, [r1, #APMC_CGMR]        ; Store the configuration of the Clock Generator

;- Now the Master clock is the output of PLL @ 32MHz
;----------------------------------------------------
                mov         pc,r14              ; Return

            END

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -