📄 ex8_kmedoids
字号:
#!/usr/perl/perl580/bin/perl -wuse strict;use Algorithm::Cluster qw/kmedoids distancematrix/;my $file = "../../data/cyano.txt";my $i = 0;my $j = 0;my (@orfname,@orfdata,@weight,@mask);open(DATA,"<$file") or die "Can't open file $file: $!";#------------------# Read in the data file, and save the data to @orfdata# We know that the file is intact and has no holes, # so just set the mask to 1 for every item.# We don't check for errors in this case, because the file# is short and we can spot errors by eye. #my $firstline = <DATA>; # Skip the title linewhile(<DATA>) { chomp(my $line = $_); my @field = split /\t/, $line; $orfname[$i] = $field[0]; $orfdata[$i] = [ @field[2..5] ]; $mask[$i] = [ 1,1,1,1 ]; ++$i;}close(DATA);#------------------# Make a reverse-lookup index of the @orfnames hash:#my %orfname_by_rowid;$i=0;$orfname_by_rowid{$i++} = $_, foreach(@orfname);@weight = (1.0) x 4;#------------------# Define the params we want to pass to distancematrixmy %params1 = ( transpose => 0, dist => 'e', data => \@orfdata, mask => \@mask, weight => \@weight,);#------------------# Here is where we invoke the library function!#printf("Calculating the distance matrix\n");my $matrix = distancematrix(%params1);##------------------my %params2 = ( nclusters => 6, distances => $matrix, npass => 1000,);printf("Executing k-medoids clustering 1000 times, using random initial clusterings\n");my ($clusters, $error, $found) = kmedoids(%params2);my $item;$i = 0;foreach $item (@{$clusters}) { print $i, ": ", $item, "\n"; ++$i;}#------------------# Print out the resulting within-cluster sum of distances.#print "------------------\n";printf("Within-cluster sum of distances: %f; solution was found %d times\n\n", $error, $found); #------------------# Try this again with a specified initial clustering solution#my @initialid = (0,1,2,3,4,5) x 15;# choice for the initial clustering; the data file contains 90 genes. %params2 = ( nclusters => 6, distances => $matrix, initialid => \@initialid,); printf("Executing k-medoids clustering with a specified initial clustering\n"); ($clusters, $error, $found) = kmedoids(%params2); printf("Within-cluster sum of distances: %f\n\n", $error);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -