⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lorenzgui.m

📁 有趣的可视的数值方法 出自网站http://www.mathworks.com/moler
💻 M
字号:
function lorenzgui%LORENZGUI   Plot the orbit around the Lorenz chaotic attractor.%   This function animates the integration of the three coupled%   nonlinear differential equations that define the Lorenz Attractor,%   a chaotic system first described by Edward Lorenz of MIT.%   As the integration proceeds you will see a point moving in%   an orbit in 3-D space known as a strange attractor.%   The orbit ranges around two different critical points, or attractors.%   The orbit is bounded, but may not be periodic and or convergent.%%   The mouse and arrow keys change the 3-D viewpoint.  Uicontrols%   provide "pause", "resume", "stop", "restart", "clear", and "close".%%   A listbox provides a choice among five values of the parameter rho.%   The first value, 28, is the most common and produces the chaotic%   behavior.  The other four values values produce periodic behaviors%   of different complexities.  A change in rho becomes effective only%   after a "stop" and "restart".%%   Reference: Colin Sparrow, "The Lorenz Equations: Bifurcations,%   Chaos, and Strange Attractors", Springer-Verlag, 1982.if ~isequal(get(gcf,'name'),'Lorenz Gui')      % This is first entry, just initialize the figure window.   rhos = [28 99.65 100.5 160 350];   shg   clf reset   p = get(gcf,'pos');   set(gcf,'color','black','doublebuff','on','name','Lorenz Gui', ...      'menu','none','numbertitle','off', ...      'pos',[p(1) p(2)-(p(3)-p(4))/2 p(3) p(3)])   % Callback to erase comet by jiggling figure position   klear = ['set(gcf,''pos'',get(gcf,''pos'')+[0 0 0 1]), drawnow,' ...            'set(gcf,''pos'',get(gcf,''pos'')-[0 0 0 1]), drawnow'];   % Uicontrols   paws = uicontrol('style','toggle','string','start', ...      'units','norm','pos',[.02 .02 .10 .04],'value',0, ...      'callback','lorenzgui');   stop = uicontrol('style','toggle','string','close', ...      'units','norm','pos',[.14 .02 .10 .04],'value',0, ...      'callback','cameratoolbar(''close''), close(gcf)');   clear = uicontrol('style','push','string','clear', ...      'units','norm','pos',[.26 .02 .10 .04], ...      'callback',klear);   rhostr = sprintf('%6.2f|',rhos);   rhopick = uicontrol('style','listbox','tag','rhopick', ...      'units','norm','pos',[.82 .02 .14 .14], ...      'string',rhostr(1:end-1),'userdata',rhos,'value',1);else   % The differential equation is ydot = A(y)*y   % With this value of eta, A is singular.   % The eta's in A will be replaced by y(2) during the integration.   rhopick = findobj('tag','rhopick');   rhos = get(rhopick,'userdata');   rho = rhos(get(rhopick,'value'));   sigma = 10;   beta = 8/3;   eta = sqrt(beta*(rho-1));   A = [ -beta    0     eta            0  -sigma   sigma          -eta   rho    -1  ];      % The critical points are the null vectors of A.   % The initial value of y(t) is near one of the critical points.      yc = [rho-1; eta; eta];   y0 = yc + [0; 0; 3];      % Integrate forever, or until the stop button is toggled.      tspan = [0 Inf];   opts = odeset('reltol',1.e-6,'outputfcn',@lorenzplot,'refine',4);   ode45(@lorenzeqn, tspan, y0, opts, A);end% ------------------------------function ydot = lorenzeqn(t,y,A)%LORENZEQN  Equation of the Lorenz chaotic attractor.%   ydot = lorenzeqn(t,y,A).%   The differential equation is written in almost linear form.%      ydot = A*y%   where%      A = [ -beta    0     y(2)%               0  -sigma   sigma %            -y(2)   rho    -1  ];A(1,3) = y(2);A(3,1) = -y(2);ydot = A*y;% ------------------------------function fin = lorenzplot(t,y,job,A)%LORENZPLOT   Plot the orbit of the Lorenz chaotic attractor.persistent Yif isequal(job,'init')   % Initialize axis and comet, R = axis settings, L = length of comet.   rho = A(3,2);   switch rho      case 28,    R = [  5  45  -20  20  -25  25];  L = 100;      case 99.65, R = [ 50 150  -35  35  -60  60];  L = 240;      case 100.5, R = [ 50 150  -35  35  -60  60];  L = 120;      case 160,   R = [100 220  -40  40  -75  75];  L = 165;      case 350,   R = [285 435  -55  55 -105 105];  L =  80;      otherwise,  R = [100 250  -50  50 -100 100];  L = 150;   end   set(gcf,'pos',get(gcf,'pos')+[0 0 0 1])   drawnow   set(gcf,'pos',get(gcf,'pos')-[0 0 0 1])   drawnow   if get(gca,'userdata') ~= rho, delete(gca), end   set(gca,'color','black','pos',[.03 .05 .93 .95],'userdata',rho)   axis(R);   axis off   comet(1) = line(y(1),y(2),y(3),'linestyle','none','marker','.', ...      'erasemode','xor','markersize',25);   comet(2) = line(NaN,NaN,NaN,'color','y','erasemode','none');   comet(3) = line(NaN,NaN,NaN,'color','y','erasemode','none');   Y = y(:,ones(L,1));   uics = flipud(get(gcf,'children'));   paws = uics(1);   stop = uics(2);   set(paws,'string','pause','callback','','value',0);   set(stop,'string','stop','callback','','value',0);   beta = -A(1,1);   eta = sqrt(beta*(rho-1));   yc = [rho-1; eta; eta];   line(yc(1),yc(2),yc(3),'linestyle','none','marker','o','color','g')   line(yc(1),-yc(2),-yc(3),'linestyle','none','marker','o','color','g')   ax = [R(2) R(1) R(1) R(1) R(1)];   ay = [R(3) R(3) R(4) R(3) R(3)];   az = [R(5) R(5) R(5) R(5) R(6)];   p = .9;   q = 1-p;   grey = [.4 .4 .4];   line(ax,ay,az,'color',grey);   text(p*R(1)+q*R(2),R(3),p*R(5),sprintf('%3.0f',R(1)),'color',grey)   text(q*R(1)+p*R(2),R(3),p*R(5),sprintf('%3.0f',R(2)),'color',grey)   text(R(1),p*R(3)+q*R(4),p*R(5),sprintf('%3.0f',R(3)),'color',grey)   text(R(1),q*R(3)+p*R(4),p*R(5),sprintf('%3.0f',R(4)),'color',grey)   text(R(1),R(3),p*R(5)+q*R(6),sprintf('%3.0f',R(5)),'color',grey)   text(R(1),R(3),q*R(5)+p*R(6),sprintf('%3.0f',R(6)),'color',grey)   fin = 0;   cameratoolbar('setmode','orbit')   uicontrol('style','text','units','norm','pos',[.38 .02 .34 .04], ...      'foreground','white','background','black','fontangle','italic', ...      'string','Click on axis to rotate view')elseif isequal(job,'done')   fin = 1;else   % Update comet   L = size(y,2);   Y(:,end+1:end+L) = y;   comet = flipud(get(gca,'children'));   set(comet(1),'xdata',Y(1,end),'ydata',Y(2,end),'zdata',Y(3,end));   set(comet(2),'xdata',Y(1,2:end),'ydata',Y(2,2:end),'zdata',Y(3,2:end))   set(comet(3),'xdata',Y(1,1:2),'ydata',Y(2,1:2),'zdata',Y(3,1:2))   Y(:,1:L) = [];   drawnow;   % Pause and restart   uics = flipud(get(gcf,'children'));   paws = uics(1);   stop = uics(2);   rhopick = uics(4);   rho = A(3,2);   while get(paws,'value')==1 & get(stop,'value')==0      set(paws,'string','resume');      drawnow;   end   set(paws,'string','pause')   fin = get(stop,'value') | get(rhopick,'value')==rho;   if fin      set(paws,'value',0,'string','restart','callback','lorenzgui')      set(stop,'value',0,'string','close', ...         'callback','cameratoolbar(''close''), close(gcf)')   endend

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -