📄 primespiral.m
字号:
function [Sout,Pout] = primespiral(n,c)
% PRIMESPIRAL Ulam's prime number spiral.
% PRIMESPIRAL(n,c) plots the prime numbers in the n-by-n matrix
% generated by storing c:c+n^2 in a spiral pattern starting in
% the center. The concentration of primes on some of the diagonals
% is remarkable. This phenomenon was discovered by Stanislaw Ulam
% in 1963, and featured on the cover of Scientific American in
% March, 1964. For n <= 42, primespiral(n,c) shows the spiral
% numbering scheme. The default value of c is 1.
%
% With one or two output arguments,
% S = primespiral(n,c), or
% [S,P] = primespiral(n,c)
% does no plotting, but returns S = prime spiral and P = isprime(S).
%
% Examples:
% primespiral(7)
% primespiral(17,17)
% primespiral(41,41)
% primespiral(200)
if nargout > 0
[Sout,Pout] = spiralprimes(n,c);
return
end
if ~isequal(get(gcf,'name'),'Prime spiral')
clf
shg
b(1) = uicontrol('sty','tog','uni','nor','pos',[.02 .02 .05 .05], ...
'string','<','fontweight','bold','callback','primespiral(''<'')');
b(2) = uicontrol('sty','tog','uni','nor','pos',[.08 .02 .05 .05], ...
'string','-','fontweight','bold','callback','primespiral(''-'')');
b(3) = uicontrol('sty','tog','uni','nor','pos',[.14 .02 .05 .05], ...
'string','+','fontweight','bold','callback','primespiral(''+'')');
b(4) = uicontrol('sty','tog','uni','nor','pos',[.20 .02 .05 .05], ...
'string','>','fontweight','bold','callback','primespiral(''>'')');
set(gcf,'doublebuffer','on','name','Prime spiral', ...
'menu','none','numbertitle','off','userdata',b);
uicontrol('uni','nor','pos',[.90 .02 .08 .05], ...
'string','close','callback','close(gcf)')
end
b = get(gcf,'userdata');
if nargin < 1, n = 200; end
if nargin < 2, c = 1; end
if isstr(n)
if n ~= '<', set(b(1),'value',0), end
if n ~= '>', set(b(4),'value',0), end
c = get(b(1),'userdata');
if n == '<' | n == '-', c = max(c-1,1); end
if n == '>' | n == '+', c = c+1; end
n = get(b(4),'userdata');
end
set(b(1),'userdata',c)
set(b(4),'userdata',n)
while c >= 1
[S,P] = spiralprimes(n,c);
spydetail(S,P)
title(['c = ' int2str(c)])
xlabel([int2str(nnz(P)) ' primes'])
drawnow
if get(b(1),'value'), c = max(c-1,1); end
if get(b(4),'value'), c = c+1; end
set(b(1),'userdata',c)
if get(b(1),'value') == 0 & get(b(4),'value') == 0
break
end
end
if c == 1
set(b(1:2),'enable','off')
else
set(b(1:2),'enable','on')
end
set(b([1 4]),'value',0)
% ------------------------
function [S,P] = spiralprimes(n,c)
% SPIRALPRIMES
% [S,P] = spiralprimes(n,c) returns two n-by-n matrices.
% S is the spiral numbering of c:c+n^2-1.
% P is true for the primes in S.
m = n^2-1+c;
P = zeros(m,1);
P(primes(m)) = 1;
S = spiral(n)+c-1;
P = reshape(P(S(:)),n,n);
% ------------------------
function S = spiral(n)
%SPIRAL SPIRAL(n) is an n-by-n matrix with elements
% 1:n^2 arranged in a rectangular spiral pattern.
S = [];
for m = 1:n
S = rot90(S,2);
S(m,m) = 0;
p = m^2-m+1;
v = (m-1:-1:0);
S(:,m) = p-v';
S(m,:) = p+v;
end
if mod(n,2)==1
S = rot90(S,2);
end
% ------------------------
function spydetail(S,P)
% SPYDETAIL
% SPYDETAIL(S,P) is like SPY(P) with the element values from S.
[n,n] = size(P);
if n <= 42
delete(gca)
axis([0 n+1 0 n+1])
axis square
axis ij
for i = 1:n
for j = 1:n
if P(i,j)
color = [0 0 1];
fs = max(1,floor(16-2*log2(n)));
else
color = [1/3 1/3 1/3];
fs = max(1,floor(16-3*log2(n)));
end
text(j,i,int2str(S(i,j)),'fontsize',fs,'color',color)
end
end
else
if n <= 500, ms = 6; else, ms = 1; end
[i,j] = find(P);
plot(j,i,'.','markersize',ms)
axis([0 n+1 0 n+1])
axis square
axis ij
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -