📄 eigsvdgui.m
字号:
function D = eigsvdgui(A,job)%EIGSVDGUI Demonstrate computation of matrix eigenvalues and singular values.% EIGSVDGUI shows three variants of the QR algorithm.%% EIGSVDGUI(A) for square, nonsymmetric A, or EIGSVDGUI(A,'eig'), reduces% A to Hessenberg form, then applies a double-shift, eigenvalue-preserving% QR algorithm. The result is the real Schur block upper triangular form,% with one-by-one diagonal blocks for real eigenvalues and two-by-two% diagonal blocks for pairs of complex eigenvalues.%% EIGSVDGUI(A) for square, symmetric A, or EIGSVDGUI(A,'symm'), reduces% the symmetric part, (A+A')/2, to tridiagonal form, then applies a% single-shift, eigenvalue-preserving QR algorithm. The result is% a diagonal matrix containing the eigenvalues, which are all real.%% EIGSVDGUI(A) for rectangular A, or EIGSVDGUI(A,'svd'), reduces A to% bidiagonal form, then applies a single-shift QR algorithm that preserves% the singular values. The result is a diagonal matrix containing the% singular values.%% If A is symmetric and positive definite, the three variants compute% the same final diagonal matrix by three different algorithms.%% D = EIGSVDGUI(...) returns the diagonal or Schur result.if nargin < 1 A = randn(24,24); job = 'symm';elseif nargin < 2 if isequal(A,A') job = 'symm'; elseif isequal(size(A),size(A')) job = 'eig'; else job = 'svd'; endelseif isequal(A,'gcf') A = get(gcf,'userdata');endshgJ = jet(256);J(1,:) = get(gcf,'color');set(gcf,'doublebuffer','on','colormap',J,'userdata',A, ... 'name',['eigsvdgui(A,''' job ''')'],'menu','none','numbertitle','off');if isequal(job,'symm'); A = eiggui((A+A')/2);elseif isequal(job,'eig') A = eiggui(A);else A = svdgui(A);endeig = uicontrol('units','norm','pos',[.02,.02,.10,.04], ... 'string','eig','callback','eigsvdgui(''gcf'',''eig'')');symm = uicontrol('units','norm','pos',[.14,.02,.10,.04], ... 'string','symm', 'callback','eigsvdgui(''gcf'',''symm'')');svd = uicontrol('units','norm','pos',[.26,.02,.10,.04], ... 'string','svd', 'callback','eigsvdgui(''gcf'',''svd'')');stop = uicontrol('units','norm','pos',[.38,.02,.10,.04], ... 'string','close','callback','close');if ~isequal(size(A),size(A')) set([eig,symm],'foreground',[.66 .66 .66],'callback',[])endif nargout > 0 D = A;end% -------------------------------------------function A = eiggui(A)scale = 256/sqrt(max(abs(diag(A'*A))));imageh = image(ceil(scale*abs(A))+1);daspect([1 1 1])issymm = isequal(A,A');iscmplx = ~isreal(A);% Househoulder reduction to tridiagonal or Hessenberg form.[n,n] = size(A);for k = 1:n-2 % Introduce zeros below the subdiagonal in the k-th column. u = A(:,k); u(1:k) = 0; sigma = norm(u); if sigma ~= 0 if u(k+1) ~= 0, sigma = sign(u(k+1))*sigma; end u(k+1) = u(k+1) + sigma; rho = 1/(sigma'*u(k+1)); v = rho'*A*u; w = (rho*u'*A)'; gamma = rho/2*u'*v; v = v - gamma*u; gamma = rho/2*u'*w; w = w - gamma*u; A = A - v*u' - u*w'; A(k+2:n,k) = 0; if issymm, A(k,k+2:n) = 0; end end set(imageh,'cdata',ceil(scale*abs(A))+1) pause(.1)end% Tridiagonal or Hessenberg QR algorithm.it = 0;titleh = title('0');k = n;while k > 1 % 1-by-1 convergence test. if abs(A(k,k-1)) <= 2*eps*(abs(A(k-1,k-1)) + abs(A(k,k))) A(k,k-1) = 0; if issymm A(k-1,k) = 0; A(k,k) = real(A(k,k)); end k = k-1; else % Wilkinson shift, eigenvalues of lower 2-by-2, A(k-1:k,k-1:k). r = (A(k,k)-A(k-1,k-1))/(2*A(k,k-1)); s = r^2 + A(k-1,k)/A(k,k-1); % Use single shift for real eigenvalues of real matrices % and for all eigenvalues of complex matrices. if iscmplx | s >= 0 % Single real shift, eigenvalue of 2-by-2 closest to A(k,k). s = sqrt(s); if r < 0, s = -s; end if r+s ~= 0, s = A(k,k) + A(k-1,k)/(r+s); end % Single QR step. I = eye(k,k); [Q,R] = qr(A(1:k,1:k) - s*I); A(1:k,1:k) = R*Q + s*I; it = it+1; else % Complex eigenvalues of real matrices. % 2-by-2 convergence test. if k == 2 k = 0; elseif abs(A(k-1,k-2)) <= 2*eps*(abs(A(k-2,k-2)) + abs(A(k-1,k-1))) A(k-1,k-2) = 0; if issymm, A(k-2,k-1) = 0; end k = k-2; else % Sum and product of eigenvalues of lower 2-by-2. t = A(k-1,k-1) + A(k,k); d = A(k-1,k-1)*A(k,k) - A(k,k-1)*A(k-1,k); % Double QR step. I = eye(k,k); [Q,R] = qr(A(1:k,1:k)^2 - t*A(1:k,1:k) + d*I); A(1:k,1:k) = triu(Q'*A(1:k,1:k)*Q,-1); it = it+2; end end end if issymm, A(1:k,1:k) = tril(A(1:k,1:k),1); end set(imageh,'cdata',ceil(scale*abs(A))+1) set(titleh,'string',num2str(it)) pause(.1)endif issymm, A(1,1) = real(A(1,1)); end% -------------------------------------------function A = svdgui(A)%SVDGUI Demonstrate the computation of the SVD.% SVDGUI(A) shows the steps in the computation of the% singular value decomposition of any real or complex matrix.scale = 256/sqrt(max(abs(diag(A'*A))));imageh = image(ceil(scale*abs(A))+1);daspect([1 1 1])% Househoulder reduction to bidiagonal form.[m,n] = size(A);for k = 1:min(m,n) % Introduce zeros below the diagonal in the k-th column. u = A(:,k); u(1:k-1) = 0; sigma = norm(u); if sigma ~= 0 if u(k) ~= 0, sigma = sign(u(k))*sigma; end u(k) = u(k) + sigma; rho = 1/(sigma'*u(k)); v = rho*(u'*A); A = A - u*v; A(k+1:m,k) = 0; end set(imageh,'cdata',ceil(scale*abs(A))+1); pause(.1) % Introduce zeros to the right of the superdiagonal in the k-th row. u = A(k,:); u(1:k) = 0; sigma = norm(u); if sigma ~= 0 if u(k+1) ~= 0, sigma = sign(u(k+1))*sigma; end u(k+1) = u(k+1) + sigma; rho = 1/(sigma'*u(k+1)); v = rho*(A*u'); A = A - v*u; A(k,k+2:n) = 0; end set(imageh,'cdata',ceil(scale*abs(A))+1); pause(.1)end% Bidiagonal SVD QR iteration.it = 0;titleh = title('0');k = min(m,n);while k > 1 % Convergence test. if abs(A(k-1,k)) <= 2*eps*(abs(A(k-1,k-1)) + abs(A(k,k))) A(k-1,k) = 0; k = k-1; else % One step of single shift QR iteration. % Wilkinson shift, eigenvalue of lower 2-by-2 of A'*A. T = A(1:k,1:k)'*A(1:k,1:k); r = (T(k,k)-T(k-1,k-1))/(2*T(k,k-1)); s = sqrt(r^2 + T(k-1,k)/T(k,k-1)); if r < 0, s = -s; end if r+s ~= 0, s = T(k,k) + T(k-1,k)/(r+s); end I = eye(k,k); [Q,R] = qr(T-s*I); A(1:k,1:k) = A(1:k,1:k)*Q; [Q,R] = qr(A(1:k,1:k)); A(1:k,1:k) = tril(R,1); it = it+1; end set(imageh,'cdata',ceil(scale*abs(A))+1); set(titleh,'string',num2str(it)) pause(.1)endA = abs(A);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -