📄 pchiptx.m
字号:
function v = pchiptx(x,y,u)%PCHIPTX Textbook piecewise cubic Hermite interpolation.% v = pchiptx(x,y,u) finds the shape-preserving piecewise cubic% interpolant P(x), with P(x(j)) = y(j), and returns v(k) = P(u(k)).%% See PCHIP, SPLINETX. % First derivatives h = diff(x); delta = diff(y)./h; d = pchipslopes(h,delta);% Piecewise polynomial coefficients n = length(x); c = (3*delta - 2*d(1:n-1) - d(2:n))./h; b = (d(1:n-1) - 2*delta + d(2:n))./h.^2;% Find subinterval indices k so that x(k) <= u < x(k+1) k = ones(size(u)); for j = 2:n-1 k(x(j) <= u) = j; end% Evaluate interpolant s = u - x(k); v = y(k) + s.*(d(k) + s.*(c(k) + s.*b(k)));% -------------------------------------------------------function d = pchipslopes(h,delta)% PCHIPSLOPES Slopes for shape-preserving Hermite cubic% pchipslopes(h,delta) computes d(k) = P'(x(k)).% Slopes at interior points% delta = diff(y)./diff(x).% d(k) = 0 if delta(k-1) and delta(k) have opposites% signs or either is zero.% d(k) = weighted harmonic mean of delta(k-1) and% delta(k) if they have the same sign. n = length(h)+1; d = zeros(size(h)); k = find(sign(delta(1:n-2)).*sign(delta(2:n-1))>0)+1; w1 = 2*h(k)+h(k-1); w2 = h(k)+2*h(k-1); d(k) = (w1+w2)./(w1./delta(k-1) + w2./delta(k));% Slopes at endpoints d(1) = pchipend(h(1),h(2),delta(1),delta(2)); d(n) = pchipend(h(n-1),h(n-2),delta(n-1),delta(n-2));% -------------------------------------------------------function d = pchipend(h1,h2,del1,del2)% Noncentered, shape-preserving, three-point formula. d = ((2*h1+h2)*del1 - h1*del2)/(h1+h2); if sign(d) ~= sign(del1) d = 0; elseif (sign(del1)~=sign(del2))&(abs(d)>abs(3*del1)) d = 3*del1; end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -