📄 fmintx.m
字号:
function u = fmintx(F,a,b,tol,varargin)%FMINTX Textbook version of FMINBND% x = FMINTX(F,a,b) finds a local minimizer x of the function F% in the interval a <= x <= b. F accepts scalar input x and returns % a scalar function value, F(x).%% x = FMINTX(F,a,b,tol) uses stopping tolerance tol instead of 1.e-6.%% x = FMINTX(F,a,b,tol,p1,p2,...) provides for additional% arguments, which are passed to the objective function, F(x,p1,p2,...).% (Use [] as a place holder for tol to get the default tolerance.)%% Example% x = fmintx(@cos,3,4)% computes pi to six decimal places.%% See also FMINBND, FMINSEARCH, FZERO, @, INLINE.% Reference: "Computer Methods for Mathematical Computations",% Forsythe, Malcolm, and Moler, Prentice-Hall, 1976.% Initializationif nargin < 4 | isempty(tol) tol = 1.e-6; endphi = (1 + sqrt(5))/2;rho = 2 - phi;u = a + rho*(b-a);v = u; w = u; x = u;fu = feval(F,u,varargin{:}); fv = fu; fw = fu; fx = fu;xm = 0.5*(a+b);d = 0.0;e = 0.0;% Main loopwhile abs(x-xm) > tol % Is a parabolic fit possible? para = abs(e) > tol; if para % Try parabolic fit. r = (x-w)*(fx-fv); q = (x-v)*(fx-fw); p = (x-v)*q-(x-w)*r; s = 2*(q-r); if s > 0.0, p = -p; end s = abs(s); % Is the parabola acceptable? para = ( (abs(p)<abs(0.5*s*e)) & (p>s*(a-x)) & (p<s*(b-x)) ); if para % Parabolic interpolation step e = d; d = p/s; end end if ~para % Golden-section step if x >= xm e = a-x; else e = b-x; end d = rho*e; end u = x + d; fu = feval(F,u,varargin{:}); % Update a, b, x, v, w, xm if fu <= fx if u >= x, a = x; else, b = x; end v = w; fv = fw; w = x; fw = fx; x = u; fx = fu; else if u < x, a = u; else, b = u; end if ( (fu <= fw) | (w == x) ) v = w; fv = fw; w = u; fw = fu; elseif ( (fu <= fv) | (v == x) | (v == w) ) v = u; fv = fu; end end xm = 0.5*(a+b);end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -