📄 splinetx.m
字号:
function v = splinetx(x,y,u)%SPLINETX Textbook spline function.% v = splinetx(x,y,u) finds the piecewise cubic interpolatory% spline S(x), with S(x(j)) = y(j), and returns v(k) = S(u(k)).%% See SPLINE, PCHIPTX.% First derivatives h = diff(x); delta = diff(y)./h; d = splineslopes(h,delta);% Piecewise polynomial coefficients n = length(x); c = (3*delta - 2*d(1:n-1) - d(2:n))./h; b = (d(1:n-1) - 2*delta + d(2:n))./h.^2;% Find subinterval indices k so that x(k) <= u < x(k+1) k = ones(size(u)); for j = 2:n-1 k(x(j) <= u) = j; end% Evaluate spline s = u - x(k); v = y(k) + s.*(d(k) + s.*(c(k) + s.*b(k)));% -------------------------------------------------------function d = splineslopes(h,delta)% SPLINESLOPES Slopes for cubic spline interpolation.% splineslopes(h,delta) computes d(k) = S'(x(k)).% Uses not-a-knot end conditions.% Diagonals of tridiagonal system n = length(h)+1; a = zeros(size(h)); b = a; c = a; r = a; a(1:n-2) = h(2:n-1); a(n-1) = h(n-2)+h(n-1); b(1) = h(2); b(2:n-1) = 2*(h(2:n-1)+h(1:n-2)); b(n) = h(n-2); c(1) = h(1)+h(2); c(2:n-1) = h(1:n-2);% Right-hand side r(1) = ((h(1)+2*c(1))*h(2)*delta(1)+ ... h(1)^2*delta(2))/c(1); r(2:n-1) = 3*(h(2:n-1).*delta(1:n-2)+ ... h(1:n-2).*delta(2:n-1)); r(n) = (h(n-1)^2*delta(n-2)+ ... (2*a(n-1)+h(n-1))*h(n-2)*delta(n-1))/a(n-1);% Solve tridiagonal linear system d = tridisolve(a,b,c,r);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -