📄 membranetx.m
字号:
function [L,lambda] = membranetx(k,m,n,np)%MEMBRANETX Textbook version of MEMBRANE, eigenfunctions of L-membrane.%% L = MEMBRANETX(k) is the k-th eigenfunction of the L-shaped membrane.% [L,lambda] = MEMBRANETX(k) also returns the k-th eigenvalue.%% L = MEMBRANETX(k,m,n,np) sets some mesh and accuracy parameters:%% k = index of eigenfunction, default k = 1.% m = number of points on one edge of one square.% The output L is 2*m+1-by-2*m+1. The default m = 30.% n = number of terms in sum, default n = min(m,20).% np = number of terms in partial sum, default np = n.% With np = n, the eigenfunction is zero on the boundary.% With np < n, such as np = 2, the boundary is not tied down.%% L = ROT90(MEMBRANETX(1,15,9,2),-1) is the MathWorks logo.% Default parametersif nargin < 1, k = 1; endif nargin < 2, m = 30; endif nargin < 3, n = min(m,20); endif nargin < 4, np = n; end% Compute eigenvalue and symmetry class.% sym = 1, symmetric about center line% sym = 2, antisymmetric about center line% sym >= 3, eigenvalue of the square, reflected into other squares[lambda,sym] = membraneval(k,m,n);if m == 1, L = lambda(k); return, end% The null vector from the SVD of the boundary matrix gives coefficients.[sigma,c,alfa] = membranesvd(lambda,sym,m,n);% Evaluate the eigenfunction on a square grid.L = membranefun(lambda,sym,c,alfa,m,n,np);% ------------------------------function [lambda,sym] = membraneval(k,m,n);% MEMBRANEVAL% [lambda,sym] = membraneval(k,m,n) is the k-th eigenvalue of% the L shaped membrane, and its symmetry class.% m = number of points on one edge of one square.% n = number of terms in sum.persistent lambdas symsif isempty(lambdas) & exist('membrane.mat') % Load precomputed eigenvalues load membrane.matendif length(lambdas) < k % Compute eigenvalues beyond those already computed. % Algorithm: % Use direct search to get near local minima of membranesvd(lambda). % Then use "fmintx" to home in on the minimizers. % The step size delta controls the direct search. % Increasing delta decreases computer time, but might miss some eigenvalues. % kmax = number of eigenvalues. % delta = search increment. % tol = tolerance for fmintx kmax = k; delta = .01; tol = 1.e-12; k = length(lambdas); if k == 0 lambdas(1) = fmintx(@membranesvd,9.6,9.7,tol,1,m,n); syms(1) = 1; k = 1; fprintf(1,'%4.0d %18.12f %4.0d\n',k,lambdas(k),syms(k)) end xstart = delta*floor(lambdas(k)/delta); x = [0 0 xstart]; f = zeros(3,3); % Look for x so that f(x) < both f(x-delta) and f(x+delta). while k < kmax x(1:2) = x(2:3); x(3) = x(3) + delta; for s = 1:3 % Symmetry class. f(s,1:2) = f(s,2:3); f(s,3) = membranesvd(x(3),s,m,n); if f(s,2) < f(s,1) & f(s,2) < f(s,3); lam = fmintx(@membranesvd,x(1),x(3),tol,s,m,n); if s < 3 mult = 1; else % Multiple eigenvalues are integer multiples of pi^2 p = round(lam/pi^2); lam = p*pi^2; [i,j] = ndgrid(1:sqrt(p)); mult = sum(p == i(:).^2+j(:).^2); end for mu = 1:mult k = k+1; lambdas(k,1) = lam; syms(k,1) = s+mu-1; fprintf(1,'%4.0d %18.12f %4.0d\n',k,lambdas(k),syms(k)) pause(0) end end end endend[lambdas,p] = sort(lambdas);syms = syms(p);% save membrane lambdas symslambda = lambdas(k);sym = syms(k);% ------------------------------function [sigma,c,alfa] = membranesvd(lambda,sym,m,n)% MEMBRANESVD% Evaluate fundamental solutions on boundary of L-shaped region.% sigma = membranesvd(lambda,s,m,n) is the smallest singular value of the% matrix obtained by evaluating n fundamental solutions with symmetry class% s at 3*m+1 points on the boundary of the L. If lambda is chosen to give% a local minima of this function, the resulting null vector, c, provides% coeffients for a linear combination over the entire region that nearly% vanishes on the boundary.%% Input:% lambda = eigenvalue parameter, vary this to minimize the resulting sigma.% sym = symmetry class.% m = number of points on edge of one square.% n = number of fundamental solutions.%% Output:% sigma = smallest singular value.% c = null vector = coefficients.% alfa = 1-by-n vector of Bessel function orders for given symmetry.% Bessel function orders.% sym = 1, alfa = (2/3) * [1 5 7 11 13 ... ], (odd, not divisible by 3)% sym = 2, alfa = (2/3) * [2 4 8 10 14 ... ], (even, not divisible by 3)% sym >= 3, alfa = [2 4 6 8 10 ... ] = even integersswitch sym case {1,2} j = (sym:2:3*n); j(mod(j,3)==0) = []; alfa = (2/3)*j; otherwise alfa = 2*(1:n);end% Use polar coordinates to describe three-eighths of the boundary.x = [ones(m,1); (m:-1:-m)'/m];y = [(0:m-1)'/m; ones(2*m+1,1)];theta = atan2(y,x);r = sqrt(x.^2 + y.^2);% Evaluate the fundamental solutions on the boundary.% A is a (3*m+1)-by-n matrix.A = besselj(alfa,sqrt(lambda)*r).*sin(theta*alfa);% Scale to make columns comparable.scale = diag(sparse(1./sqrt(sum(A.*A))));A = A*scale;% Compute SVD and obtain coefficients from null vector(s).[U,S,V] = svd(A,0);if sym > 3, n = n-(sym-3); end % Multiple eigenvaluesigma = S(n,n);c = scale*V(:,n);% ------------------------------function L = membranefun(lambda,sym,c,alfa,m,n,np)% MEMBRANEFUN Evaluate the eigenfunction on a square grid.% L = membranefun(lambda,sym,c,alfa,m,n,np)% Used by MEMBRANETX.[x,y] = meshgrid((-m:m)/m,(m:-1:0)'/m);r = sqrt(x.*x + y.*y);theta = atan2(y,x);theta(m+1,m+1) = 0;S = zeros(m+1,2*m+1);for j = 1:np S = S + c(j)*besselj(alfa(j),sqrt(lambda)*r).*sin(alfa(j)*theta);endS = S/S(min(find(abs(S(:)) == max(abs(S(:))))));L = zeros(2*m+1,2*m+1);switch sym case 1 L(1:m+1,:) = triu(S); L = L + L' - diag(diag(L)); case 2 L(1:m+1,:) = triu(S); L = L - L'; otherwise L(1:m,1:m) = S(1:m,1:m); L(m+2:2*m+1,1:m) = -flipud(L(1:m,1:m)); L(1:m,m+2:2*m+1) = -fliplr(L(1:m,1:m));end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -