📄 dtoa.cpp
字号:
if (!*bxe) { while(--bxe > bx && !*bxe) --n; b->wds = n; } } return q; }#ifndef MULTIPLE_THREADS static char *dtoa_result;#endif static char *#ifdef KR_headersrv_alloc(i) int i;#elserv_alloc(int i)#endif{ int j, k, *r; j = sizeof(ULong); for(k = 0; sizeof(Bigint) - sizeof(ULong) - sizeof(int) + j <= (unsigned)i; j <<= 1) k++; r = (int*)Balloc(k); *r = k; return#ifndef MULTIPLE_THREADS dtoa_result =#endif (char *)(r+1); } static char *#ifdef KR_headersnrv_alloc(s, rve, n) char *s, **rve; int n;#elsenrv_alloc(CONST char *s, char **rve, int n)#endif{ char *rv, *t; t = rv = rv_alloc(n); while((*t = *s++)) t++; if (rve) *rve = t; return rv; }/* freedtoa(s) must be used to free values s returned by dtoa * when MULTIPLE_THREADS is #defined. It should be used in all cases, * but for consistency with earlier versions of dtoa, it is optional * when MULTIPLE_THREADS is not defined. */ void#ifdef KR_headersfreedtoa(s) char *s;#elsefreedtoa(char *s)#endif{ Bigint *b = (Bigint *)((int *)s - 1); b->maxwds = 1 << (b->k = *(int*)b); Bfree(b);#ifndef MULTIPLE_THREADS if (s == dtoa_result) dtoa_result = 0;#endif }/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string. * * Inspired by "How to Print Floating-Point Numbers Accurately" by * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 92-101]. * * Modifications: * 1. Rather than iterating, we use a simple numeric overestimate * to determine k = floor(log10(d)). We scale relevant * quantities using O(log2(k)) rather than O(k) multiplications. * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't * try to generate digits strictly left to right. Instead, we * compute with fewer bits and propagate the carry if necessary * when rounding the final digit up. This is often faster. * 3. Under the assumption that input will be rounded nearest, * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. * That is, we allow equality in stopping tests when the * round-nearest rule will give the same floating-point value * as would satisfaction of the stopping test with strict * inequality. * 4. We remove common factors of powers of 2 from relevant * quantities. * 5. When converting floating-point integers less than 1e16, * we use floating-point arithmetic rather than resorting * to multiple-precision integers. * 6. When asked to produce fewer than 15 digits, we first try * to get by with floating-point arithmetic; we resort to * multiple-precision integer arithmetic only if we cannot * guarantee that the floating-point calculation has given * the correctly rounded result. For k requested digits and * "uniformly" distributed input, the probability is * something like 10^(k-15) that we must resort to the Long * calculation. */ char *dtoa#ifdef KR_headers (d, mode, ndigits, decpt, sign, rve) double d; int mode, ndigits, *decpt, *sign; char **rve;#else (double d, int mode, int ndigits, int *decpt, int *sign, char **rve)#endif{ /* Arguments ndigits, decpt, sign are similar to those of ecvt and fcvt; trailing zeros are suppressed from the returned string. If not null, *rve is set to point to the end of the return value. If d is +-Infinity or NaN, then *decpt is set to 9999. mode: 0 ==> shortest string that yields d when read in and rounded to nearest. 1 ==> like 0, but with Steele & White stopping rule; e.g. with IEEE P754 arithmetic , mode 0 gives 1e23 whereas mode 1 gives 9.999999999999999e22. 2 ==> max(1,ndigits) significant digits. This gives a return value similar to that of ecvt, except that trailing zeros are suppressed. 3 ==> through ndigits past the decimal point. This gives a return value similar to that from fcvt, except that trailing zeros are suppressed, and ndigits can be negative. 4,5 ==> similar to 2 and 3, respectively, but (in round-nearest mode) with the tests of mode 0 to possibly return a shorter string that rounds to d. With IEEE arithmetic and compilation with -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same as modes 2 and 3 when FLT_ROUNDS != 1. 6-9 ==> Debugging modes similar to mode - 4: don't try fast floating-point estimate (if applicable). Values of mode other than 0-9 are treated as mode 0. Sufficient space is allocated to the return value to hold the suppressed trailing zeros. */ int bbits, b2, b5, be, dig, i, ieps, ilim = 0, ilim0, ilim1 = 0, j, j1, k, k0, k_check, leftright, m2, m5, s2, s5, spec_case, try_quick; Long L;#ifndef Sudden_Underflow int denorm; ULong x;#endif Bigint *b, *b1, *delta, *mlo = NULL, *mhi, *S; double d2, ds, eps; char *s, *s0;#ifdef Honor_FLT_ROUNDS int rounding;#endif#ifdef SET_INEXACT int inexact, oldinexact;#endif#ifndef MULTIPLE_THREADS if (dtoa_result) { freedtoa(dtoa_result); dtoa_result = 0; }#endif if (word0(d) & Sign_bit) { /* set sign for everything, including 0's and NaNs */ *sign = 1; word0(d) &= ~Sign_bit; /* clear sign bit */ } else *sign = 0;#if defined(IEEE_Arith) + defined(VAX)#ifdef IEEE_Arith if ((word0(d) & Exp_mask) == Exp_mask)#else if (word0(d) == 0x8000)#endif { /* Infinity or NaN */ *decpt = 9999;#ifdef IEEE_Arith if (!word1(d) && !(word0(d) & 0xfffff)) return nrv_alloc("Infinity", rve, 8);#endif return nrv_alloc("NaN", rve, 3); }#endif#ifdef IBM dval(d) += 0; /* normalize */#endif if (!dval(d)) { *decpt = 1; return nrv_alloc("0", rve, 1); }#ifdef SET_INEXACT try_quick = oldinexact = get_inexact(); inexact = 1;#endif#ifdef Honor_FLT_ROUNDS if ((rounding = Flt_Rounds) >= 2) { if (*sign) rounding = rounding == 2 ? 0 : 2; else if (rounding != 2) rounding = 0; }#endif b = d2b(dval(d), &be, &bbits);#ifdef Sudden_Underflow i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1));#else if ((i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) {#endif dval(d2) = dval(d); word0(d2) &= Frac_mask1; word0(d2) |= Exp_11;#ifdef IBM if (j = 11 - hi0bits(word0(d2) & Frac_mask)) dval(d2) /= 1 << j;#endif /* log(x) ~=~ log(1.5) + (x-1.5)/1.5 * log10(x) = log(x) / log(10) * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2) * * This suggests computing an approximation k to log10(d) by * * k = (i - Bias)*0.301029995663981 * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 ); * * We want k to be too large rather than too small. * The error in the first-order Taylor series approximation * is in our favor, so we just round up the constant enough * to compensate for any error in the multiplication of * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077, * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14, * adding 1e-13 to the constant term more than suffices. * Hence we adjust the constant term to 0.1760912590558. * (We could get a more accurate k by invoking log10, * but this is probably not worthwhile.) */ i -= Bias;#ifdef IBM i <<= 2; i += j;#endif#ifndef Sudden_Underflow denorm = 0; } else { /* d is denormalized */ i = bbits + be + (Bias + (P-1) - 1); x = i > 32 ? word0(d) << 64 - i | word1(d) >> i - 32 : word1(d) << 32 - i; dval(d2) = x; word0(d2) -= 31*Exp_msk1; /* adjust exponent */ i -= (Bias + (P-1) - 1) + 1; denorm = 1; }#endif ds = (dval(d2)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981; k = (int)ds; if (ds < 0. && ds != k) k--; /* want k = floor(ds) */ k_check = 1; if (k >= 0 && k <= Ten_pmax) { if (dval(d) < tens[k]) k--; k_check = 0; } j = bbits - i - 1; if (j >= 0) { b2 = 0; s2 = j; } else { b2 = -j; s2 = 0; } if (k >= 0) { b5 = 0; s5 = k; s2 += k; } else { b2 -= k; b5 = -k; s5 = 0; } if (mode < 0 || mode > 9) mode = 0;#ifndef SET_INEXACT#ifdef Check_FLT_ROUNDS try_quick = Rounding == 1;#else try_quick = 1;#endif#endif /*SET_INEXACT*/ if (mode > 5) { mode -= 4; try_quick = 0; } leftright = 1; switch(mode) { case 0: case 1: ilim = ilim1 = -1; i = 18; ndigits = 0; break; case 2: leftright = 0; /* no break */ case 4: if (ndigits <= 0) ndigits = 1; ilim = ilim1 = i = ndigits; break; case 3: leftright = 0; /* no break */ case 5: i = ndigits + k + 1; ilim = i; ilim1 = i - 1; if (i <= 0) i = 1; } s = s0 = rv_alloc(i);#ifdef Honor_FLT_ROUNDS if (mode > 1 && rounding != 1) leftright = 0;#endif if (ilim >= 0 && ilim <= Quick_max && try_quick) { /* Try to get by with floating-point arithmetic. */ i = 0; dval(d2) = dval(d); k0 = k; ilim0 = ilim; ieps = 2; /* conservative */ if (k > 0) { ds = tens[k&0xf]; j = k >> 4; if (j & Bletch) { /* prevent overflows */ j &= Bletch - 1; dval(d) /= bigtens[n_bigtens-1]; ieps++; } for(; j; j >>= 1, i++) if (j & 1) { ieps++; ds *= bigtens[i]; } dval(d) /= ds; } else if ((j1 = -k)) { dval(d) *= tens[j1 & 0xf]; for(j = j1 >> 4; j; j >>= 1, i++) if (j & 1) { ieps++; dval(d) *= bigtens[i]; } } if (k_check && dval(d) < 1. && ilim > 0) { if (ilim1 <= 0) goto fast_failed; ilim = ilim1; k--; dval(d) *= 10.; ieps++; } dval(eps) = ieps*dval(d) + 7.; word0(eps) -= (P-1)*Exp_msk1; if (ilim == 0) { S = mhi = 0; dval(d) -= 5.; if (dval(d) > dval(eps)) goto one_digit; if (dval(d) < -dval(eps)) goto no_digits; goto fast_failed; }#ifndef No_leftright if (leftright) { /* Use Steele & White method of only * generating digits needed. */ dval(eps) = 0.5/tens[ilim-1] - dval(eps); for(i = 0;;) { L = (long int)dval(d); dval(d) -= L; *s++ = '0' + (int)L; if (dval(d) < dval(eps)) goto ret1; if (1. - dval(d) < dval(eps)) goto bump_up; if (++i >= ilim) break; dval(eps) *= 10.; dval(d) *= 10.; } } else {#endif /* Generate ilim digits, then fix them up. */ dval(eps) *= tens[ilim-1]; for(i = 1;; i++, dval(d) *= 10.) { L = (Long)(dval(d)); if (!(dval(d) -= L)) ilim = i; *s++ = '0' + (int)L; if (i == ilim) { if (dval(d) > 0.5 + dval(eps)) goto bump_up; else if (dval(d) < 0.5 - dval(eps)) { while(*--s == '0'); s++; goto ret1; } break; } }#ifndef No_leftright }#endif fast_failed: s = s0; dval(d) = dval(d2); k = k0; ilim = ilim0; } /* Do we have a "small" integer? */ if (be >= 0 && k <= Int_max) { /* Yes. */ ds = tens[k]; if (ndigits < 0 && ilim <= 0) { S = mhi = 0; if (ilim < 0 || dval(d) <= 5*ds) goto no_digits; goto one_digit; } for(i = 1;; i++, dval(d) *= 10.) { L = (Long)(dval(d) / ds); dval(d) -= L*ds;#ifdef Check_FLT_ROUNDS /* If FLT_ROUNDS == 2, L will usually be high by 1 */ if (dval(d) < 0) { L--; dval(d) += ds; }#endif *s++ = '0' + (int)L; if (!dval(d)) {#ifdef SET_INEXACT inexact = 0;#endif break; } if (i == ilim) {#ifdef Honor_FLT_ROUNDS if (mode > 1) switch(rounding) { case 0: goto ret1; case 2: goto bump_up; }#endif dval(d) += dval(d); if (dval(d) > ds || dval(d) == ds && L & 1) { bump_up: while(*--s == '9') if (s == s0) { k++; *s = '0'; break; } ++*s++; } break; } } goto ret1; } m2 = b2; m5 = b5; mhi = mlo = 0; if (leftright) { i =#ifndef Sudden_Underflow denorm ? be + (Bias + (P-1) - 1 + 1) :#endif#ifdef IBM 1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3);#else 1 + P - bbits;#endif b2 += i; s2 += i; mhi = i2b(1); } if (m2 > 0 && s2 > 0) { i = m2 < s2 ? m2 : s2; b2 -= i; m2 -= i; s2 -= i; } if (b5 > 0) { if (leftright) { if (m5 > 0) { mhi = pow5mult(mhi, m5); b1 = mult(mhi, b); Bfree(b); b = b1; } if ((j = b5 - m5)) b = pow5mult(b, j); } else b = pow5mult(b, b5); } S = i2b(1); if (s5 > 0) S = pow5mult(S, s5); /* Check for special case that d is a normalized power of 2. */ spec_case = 0; if ((mode < 2 || leftright)#ifdef Honor_FLT_ROUNDS && rounding == 1#endif ) { if (!word1(d) && !(word0(d) & Bndry_mask)#ifndef Sudden_Underflow && word0(d) & (Exp_mask & ~Exp_msk1)#endif ) { /* The special case */ b2 += Log2P; s2 += Log2P; spec_case = 1; } } /* Arrange for convenient computation of quotients: * shift left if necessary so divisor has 4 leading 0 bits. * * Perhaps we should just compute leading 28 bits of S once * and for all and pass them and a shift to quorem, so it * can do shifts and ors to compute the numerator for q. */#ifdef Pack_32 if ((i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f)) i = 32 - i;#else if (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0xf) i = 16 - i;#endif if (i > 4) { i -= 4; b2 += i; m2 += i; s2 += i; } else if (i < 4) { i += 28; b2 += i; m2 += i; s2 += i; } if (b2 > 0) b = lshift(b, b2); if (s2 > 0) S = lshift(S, s2); if (k_check) { if (cmp(b,S) < 0) { k--; b = multadd(b, 10, 0); /* we botched the k estimate */ if (leftright) mhi = multadd(mhi, 10, 0); ilim = ilim1; } } if (ilim <= 0 && (mode == 3 || mode == 5)) { if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) { /* no digits, fcvt style */ no_digits: k = -1 - ndigits; goto ret; } one_digit: *s++ = '1'; k++; goto ret; } if (leftright) { if (m2 > 0) mhi = lshift(mhi, m2); /* Compute mlo -- check for special case * that d is a normalized power of 2. */ mlo = mhi; if
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -