⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dtoa.cpp

📁 khtml在gtk上的移植版本
💻 CPP
📖 第 1 页 / 共 5 页
字号:
		if (!*bxe) {			while(--bxe > bx && !*bxe)				--n;			b->wds = n;			}		}	return q;	}#ifndef MULTIPLE_THREADS static char *dtoa_result;#endif static char *#ifdef KR_headersrv_alloc(i) int i;#elserv_alloc(int i)#endif{	int j, k, *r;	j = sizeof(ULong);	for(k = 0;		sizeof(Bigint) - sizeof(ULong) - sizeof(int) + j <= (unsigned)i;		j <<= 1)			k++;	r = (int*)Balloc(k);	*r = k;	return#ifndef MULTIPLE_THREADS	dtoa_result =#endif		(char *)(r+1);	} static char *#ifdef KR_headersnrv_alloc(s, rve, n) char *s, **rve; int n;#elsenrv_alloc(CONST char *s, char **rve, int n)#endif{	char *rv, *t;	t = rv = rv_alloc(n);	while((*t = *s++)) t++;	if (rve)		*rve = t;	return rv;	}/* freedtoa(s) must be used to free values s returned by dtoa * when MULTIPLE_THREADS is #defined.  It should be used in all cases, * but for consistency with earlier versions of dtoa, it is optional * when MULTIPLE_THREADS is not defined. */ void#ifdef KR_headersfreedtoa(s) char *s;#elsefreedtoa(char *s)#endif{	Bigint *b = (Bigint *)((int *)s - 1);	b->maxwds = 1 << (b->k = *(int*)b);	Bfree(b);#ifndef MULTIPLE_THREADS	if (s == dtoa_result)		dtoa_result = 0;#endif	}/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string. * * Inspired by "How to Print Floating-Point Numbers Accurately" by * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 92-101]. * * Modifications: *	1. Rather than iterating, we use a simple numeric overestimate *	   to determine k = floor(log10(d)).  We scale relevant *	   quantities using O(log2(k)) rather than O(k) multiplications. *	2. For some modes > 2 (corresponding to ecvt and fcvt), we don't *	   try to generate digits strictly left to right.  Instead, we *	   compute with fewer bits and propagate the carry if necessary *	   when rounding the final digit up.  This is often faster. *	3. Under the assumption that input will be rounded nearest, *	   mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. *	   That is, we allow equality in stopping tests when the *	   round-nearest rule will give the same floating-point value *	   as would satisfaction of the stopping test with strict *	   inequality. *	4. We remove common factors of powers of 2 from relevant *	   quantities. *	5. When converting floating-point integers less than 1e16, *	   we use floating-point arithmetic rather than resorting *	   to multiple-precision integers. *	6. When asked to produce fewer than 15 digits, we first try *	   to get by with floating-point arithmetic; we resort to *	   multiple-precision integer arithmetic only if we cannot *	   guarantee that the floating-point calculation has given *	   the correctly rounded result.  For k requested digits and *	   "uniformly" distributed input, the probability is *	   something like 10^(k-15) that we must resort to the Long *	   calculation. */ char *dtoa#ifdef KR_headers	(d, mode, ndigits, decpt, sign, rve)	double d; int mode, ndigits, *decpt, *sign; char **rve;#else	(double d, int mode, int ndigits, int *decpt, int *sign, char **rve)#endif{ /*	Arguments ndigits, decpt, sign are similar to those	of ecvt and fcvt; trailing zeros are suppressed from	the returned string.  If not null, *rve is set to point	to the end of the return value.  If d is +-Infinity or NaN,	then *decpt is set to 9999.	mode:		0 ==> shortest string that yields d when read in			and rounded to nearest.		1 ==> like 0, but with Steele & White stopping rule;			e.g. with IEEE P754 arithmetic , mode 0 gives			1e23 whereas mode 1 gives 9.999999999999999e22.		2 ==> max(1,ndigits) significant digits.  This gives a			return value similar to that of ecvt, except			that trailing zeros are suppressed.		3 ==> through ndigits past the decimal point.  This			gives a return value similar to that from fcvt,			except that trailing zeros are suppressed, and			ndigits can be negative.		4,5 ==> similar to 2 and 3, respectively, but (in			round-nearest mode) with the tests of mode 0 to			possibly return a shorter string that rounds to d.			With IEEE arithmetic and compilation with			-DHonor_FLT_ROUNDS, modes 4 and 5 behave the same			as modes 2 and 3 when FLT_ROUNDS != 1.		6-9 ==> Debugging modes similar to mode - 4:  don't try			fast floating-point estimate (if applicable).		Values of mode other than 0-9 are treated as mode 0.		Sufficient space is allocated to the return value		to hold the suppressed trailing zeros.	*/	int bbits, b2, b5, be, dig, i, ieps, ilim = 0, ilim0, ilim1 = 0,		j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,		spec_case, try_quick;	Long L;#ifndef Sudden_Underflow	int denorm;	ULong x;#endif	Bigint *b, *b1, *delta, *mlo = NULL, *mhi, *S;	double d2, ds, eps;	char *s, *s0;#ifdef Honor_FLT_ROUNDS	int rounding;#endif#ifdef SET_INEXACT	int inexact, oldinexact;#endif#ifndef MULTIPLE_THREADS	if (dtoa_result) {		freedtoa(dtoa_result);		dtoa_result = 0;		}#endif	if (word0(d) & Sign_bit) {		/* set sign for everything, including 0's and NaNs */		*sign = 1;		word0(d) &= ~Sign_bit;	/* clear sign bit */		}	else		*sign = 0;#if defined(IEEE_Arith) + defined(VAX)#ifdef IEEE_Arith	if ((word0(d) & Exp_mask) == Exp_mask)#else	if (word0(d)  == 0x8000)#endif		{		/* Infinity or NaN */		*decpt = 9999;#ifdef IEEE_Arith		if (!word1(d) && !(word0(d) & 0xfffff))			return nrv_alloc("Infinity", rve, 8);#endif		return nrv_alloc("NaN", rve, 3);		}#endif#ifdef IBM	dval(d) += 0; /* normalize */#endif	if (!dval(d)) {		*decpt = 1;		return nrv_alloc("0", rve, 1);		}#ifdef SET_INEXACT	try_quick = oldinexact = get_inexact();	inexact = 1;#endif#ifdef Honor_FLT_ROUNDS	if ((rounding = Flt_Rounds) >= 2) {		if (*sign)			rounding = rounding == 2 ? 0 : 2;		else			if (rounding != 2)				rounding = 0;		}#endif	b = d2b(dval(d), &be, &bbits);#ifdef Sudden_Underflow	i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1));#else	if ((i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) {#endif		dval(d2) = dval(d);		word0(d2) &= Frac_mask1;		word0(d2) |= Exp_11;#ifdef IBM		if (j = 11 - hi0bits(word0(d2) & Frac_mask))			dval(d2) /= 1 << j;#endif		/* log(x)	~=~ log(1.5) + (x-1.5)/1.5		 * log10(x)	 =  log(x) / log(10)		 *		~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))		 * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)		 *		 * This suggests computing an approximation k to log10(d) by		 *		 * k = (i - Bias)*0.301029995663981		 *	+ ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );		 *		 * We want k to be too large rather than too small.		 * The error in the first-order Taylor series approximation		 * is in our favor, so we just round up the constant enough		 * to compensate for any error in the multiplication of		 * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,		 * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,		 * adding 1e-13 to the constant term more than suffices.		 * Hence we adjust the constant term to 0.1760912590558.		 * (We could get a more accurate k by invoking log10,		 *  but this is probably not worthwhile.)		 */		i -= Bias;#ifdef IBM		i <<= 2;		i += j;#endif#ifndef Sudden_Underflow		denorm = 0;		}	else {		/* d is denormalized */		i = bbits + be + (Bias + (P-1) - 1);		x = i > 32  ? word0(d) << 64 - i | word1(d) >> i - 32			    : word1(d) << 32 - i;		dval(d2) = x;		word0(d2) -= 31*Exp_msk1; /* adjust exponent */		i -= (Bias + (P-1) - 1) + 1;		denorm = 1;		}#endif	ds = (dval(d2)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;	k = (int)ds;	if (ds < 0. && ds != k)		k--;	/* want k = floor(ds) */	k_check = 1;	if (k >= 0 && k <= Ten_pmax) {		if (dval(d) < tens[k])			k--;		k_check = 0;		}	j = bbits - i - 1;	if (j >= 0) {		b2 = 0;		s2 = j;		}	else {		b2 = -j;		s2 = 0;		}	if (k >= 0) {		b5 = 0;		s5 = k;		s2 += k;		}	else {		b2 -= k;		b5 = -k;		s5 = 0;		}	if (mode < 0 || mode > 9)		mode = 0;#ifndef SET_INEXACT#ifdef Check_FLT_ROUNDS	try_quick = Rounding == 1;#else	try_quick = 1;#endif#endif /*SET_INEXACT*/	if (mode > 5) {		mode -= 4;		try_quick = 0;		}	leftright = 1;	switch(mode) {		case 0:		case 1:			ilim = ilim1 = -1;			i = 18;			ndigits = 0;			break;		case 2:			leftright = 0;			/* no break */		case 4:			if (ndigits <= 0)				ndigits = 1;			ilim = ilim1 = i = ndigits;			break;		case 3:			leftright = 0;			/* no break */		case 5:			i = ndigits + k + 1;			ilim = i;			ilim1 = i - 1;			if (i <= 0)				i = 1;		}	s = s0 = rv_alloc(i);#ifdef Honor_FLT_ROUNDS	if (mode > 1 && rounding != 1)		leftright = 0;#endif	if (ilim >= 0 && ilim <= Quick_max && try_quick) {		/* Try to get by with floating-point arithmetic. */		i = 0;		dval(d2) = dval(d);		k0 = k;		ilim0 = ilim;		ieps = 2; /* conservative */		if (k > 0) {			ds = tens[k&0xf];			j = k >> 4;			if (j & Bletch) {				/* prevent overflows */				j &= Bletch - 1;				dval(d) /= bigtens[n_bigtens-1];				ieps++;				}			for(; j; j >>= 1, i++)				if (j & 1) {					ieps++;					ds *= bigtens[i];					}			dval(d) /= ds;			}		else if ((j1 = -k)) {			dval(d) *= tens[j1 & 0xf];			for(j = j1 >> 4; j; j >>= 1, i++)				if (j & 1) {					ieps++;					dval(d) *= bigtens[i];					}			}		if (k_check && dval(d) < 1. && ilim > 0) {			if (ilim1 <= 0)				goto fast_failed;			ilim = ilim1;			k--;			dval(d) *= 10.;			ieps++;			}		dval(eps) = ieps*dval(d) + 7.;		word0(eps) -= (P-1)*Exp_msk1;		if (ilim == 0) {			S = mhi = 0;			dval(d) -= 5.;			if (dval(d) > dval(eps))				goto one_digit;			if (dval(d) < -dval(eps))				goto no_digits;			goto fast_failed;			}#ifndef No_leftright		if (leftright) {			/* Use Steele & White method of only			 * generating digits needed.			 */			dval(eps) = 0.5/tens[ilim-1] - dval(eps);			for(i = 0;;) {				L = (long int)dval(d);				dval(d) -= L;				*s++ = '0' + (int)L;				if (dval(d) < dval(eps))					goto ret1;				if (1. - dval(d) < dval(eps))					goto bump_up;				if (++i >= ilim)					break;				dval(eps) *= 10.;				dval(d) *= 10.;				}			}		else {#endif			/* Generate ilim digits, then fix them up. */			dval(eps) *= tens[ilim-1];			for(i = 1;; i++, dval(d) *= 10.) {				L = (Long)(dval(d));				if (!(dval(d) -= L))					ilim = i;				*s++ = '0' + (int)L;				if (i == ilim) {					if (dval(d) > 0.5 + dval(eps))						goto bump_up;					else if (dval(d) < 0.5 - dval(eps)) {						while(*--s == '0');						s++;						goto ret1;						}					break;					}				}#ifndef No_leftright			}#endif fast_failed:		s = s0;		dval(d) = dval(d2);		k = k0;		ilim = ilim0;		}	/* Do we have a "small" integer? */	if (be >= 0 && k <= Int_max) {		/* Yes. */		ds = tens[k];		if (ndigits < 0 && ilim <= 0) {			S = mhi = 0;			if (ilim < 0 || dval(d) <= 5*ds)				goto no_digits;			goto one_digit;			}		for(i = 1;; i++, dval(d) *= 10.) {			L = (Long)(dval(d) / ds);			dval(d) -= L*ds;#ifdef Check_FLT_ROUNDS			/* If FLT_ROUNDS == 2, L will usually be high by 1 */			if (dval(d) < 0) {				L--;				dval(d) += ds;				}#endif			*s++ = '0' + (int)L;			if (!dval(d)) {#ifdef SET_INEXACT				inexact = 0;#endif				break;				}			if (i == ilim) {#ifdef Honor_FLT_ROUNDS				if (mode > 1)				switch(rounding) {				  case 0: goto ret1;				  case 2: goto bump_up;				  }#endif				dval(d) += dval(d);				if (dval(d) > ds || dval(d) == ds && L & 1) { bump_up:					while(*--s == '9')						if (s == s0) {							k++;							*s = '0';							break;							}					++*s++;					}				break;				}			}		goto ret1;		}	m2 = b2;	m5 = b5;	mhi = mlo = 0;	if (leftright) {		i =#ifndef Sudden_Underflow			denorm ? be + (Bias + (P-1) - 1 + 1) :#endif#ifdef IBM			1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3);#else			1 + P - bbits;#endif		b2 += i;		s2 += i;		mhi = i2b(1);		}	if (m2 > 0 && s2 > 0) {		i = m2 < s2 ? m2 : s2;		b2 -= i;		m2 -= i;		s2 -= i;		}	if (b5 > 0) {		if (leftright) {			if (m5 > 0) {				mhi = pow5mult(mhi, m5);				b1 = mult(mhi, b);				Bfree(b);				b = b1;				}			if ((j = b5 - m5))				b = pow5mult(b, j);			}		else			b = pow5mult(b, b5);		}	S = i2b(1);	if (s5 > 0)		S = pow5mult(S, s5);	/* Check for special case that d is a normalized power of 2. */	spec_case = 0;	if ((mode < 2 || leftright)#ifdef Honor_FLT_ROUNDS			&& rounding == 1#endif				) {		if (!word1(d) && !(word0(d) & Bndry_mask)#ifndef Sudden_Underflow		 && word0(d) & (Exp_mask & ~Exp_msk1)#endif				) {			/* The special case */			b2 += Log2P;			s2 += Log2P;			spec_case = 1;			}		}	/* Arrange for convenient computation of quotients:	 * shift left if necessary so divisor has 4 leading 0 bits.	 *	 * Perhaps we should just compute leading 28 bits of S once	 * and for all and pass them and a shift to quorem, so it	 * can do shifts and ors to compute the numerator for q.	 */#ifdef Pack_32	if ((i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f))		i = 32 - i;#else	if (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0xf)		i = 16 - i;#endif	if (i > 4) {		i -= 4;		b2 += i;		m2 += i;		s2 += i;		}	else if (i < 4) {		i += 28;		b2 += i;		m2 += i;		s2 += i;		}	if (b2 > 0)		b = lshift(b, b2);	if (s2 > 0)		S = lshift(S, s2);	if (k_check) {		if (cmp(b,S) < 0) {			k--;			b = multadd(b, 10, 0);	/* we botched the k estimate */			if (leftright)				mhi = multadd(mhi, 10, 0);			ilim = ilim1;			}		}	if (ilim <= 0 && (mode == 3 || mode == 5)) {		if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) {			/* no digits, fcvt style */ no_digits:			k = -1 - ndigits;			goto ret;			} one_digit:		*s++ = '1';		k++;		goto ret;		}	if (leftright) {		if (m2 > 0)			mhi = lshift(mhi, m2);		/* Compute mlo -- check for special case		 * that d is a normalized power of 2.		 */		mlo = mhi;		if

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -