📄 dtoa.cpp
字号:
/**************************************************************** * * The author of this software is David M. Gay. * * Copyright (c) 1991, 2000, 2001 by Lucent Technologies. * * Permission to use, copy, modify, and distribute this software for any * purpose without fee is hereby granted, provided that this entire notice * is included in all copies of any software which is or includes a copy * or modification of this software and in all copies of the supporting * documentation for such software. * * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. * ***************************************************************//* Please send bug reports to David M. Gay Bell Laboratories, Room 2C-463 600 Mountain Avenue Murray Hill, NJ 07974-0636 U.S.A. dmg@bell-labs.com *//* On a machine with IEEE extended-precision registers, it is * necessary to specify double-precision (53-bit) rounding precision * before invoking strtod or dtoa. If the machine uses (the equivalent * of) Intel 80x87 arithmetic, the call * _control87(PC_53, MCW_PC); * does this with many compilers. Whether this or another call is * appropriate depends on the compiler; for this to work, it may be * necessary to #include "float.h" or another system-dependent header * file. *//* strtod for IEEE-, VAX-, and IBM-arithmetic machines. * * This strtod returns a nearest machine number to the input decimal * string (or sets errno to ERANGE). With IEEE arithmetic, ties are * broken by the IEEE round-even rule. Otherwise ties are broken by * biased rounding (add half and chop). * * Inspired loosely by William D. Clinger's paper "How to Read Floating * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101]. * * Modifications: * * 1. We only require IEEE, IBM, or VAX double-precision * arithmetic (not IEEE double-extended). * 2. We get by with floating-point arithmetic in a case that * Clinger missed -- when we're computing d * 10^n * for a small integer d and the integer n is not too * much larger than 22 (the maximum integer k for which * we can represent 10^k exactly), we may be able to * compute (d*10^k) * 10^(e-k) with just one roundoff. * 3. Rather than a bit-at-a-time adjustment of the binary * result in the hard case, we use floating-point * arithmetic to determine the adjustment to within * one bit; only in really hard cases do we need to * compute a second residual. * 4. Because of 3., we don't need a large table of powers of 10 * for ten-to-e (just some small tables, e.g. of 10^k * for 0 <= k <= 22). *//* * #define IEEE_8087 for IEEE-arithmetic machines where the least * significant byte has the lowest address. * #define IEEE_MC68k for IEEE-arithmetic machines where the most * significant byte has the lowest address. * #define Long int on machines with 32-bit ints and 64-bit longs. * #define IBM for IBM mainframe-style floating-point arithmetic. * #define VAX for VAX-style floating-point arithmetic (D_floating). * #define No_leftright to omit left-right logic in fast floating-point * computation of dtoa. * #define Honor_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3 * and strtod and dtoa should round accordingly. * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3 * and Honor_FLT_ROUNDS is not #defined. * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines * that use extended-precision instructions to compute rounded * products and quotients) with IBM. * #define ROUND_BIASED for IEEE-format with biased rounding. * #define Inaccurate_Divide for IEEE-format with correctly rounded * products but inaccurate quotients, e.g., for Intel i860. * #define NO_LONG_LONG on machines that do not have a "long long" * integer type (of >= 64 bits). On such machines, you can * #define Just_16 to store 16 bits per 32-bit Long when doing * high-precision integer arithmetic. Whether this speeds things * up or slows things down depends on the machine and the number * being converted. If long long is available and the name is * something other than "long long", #define Llong to be the name, * and if "unsigned Llong" does not work as an unsigned version of * Llong, #define #ULLong to be the corresponding unsigned type. * #define KR_headers for old-style C function headers. * #define Bad_float_h if your system lacks a float.h or if it does not * define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP, * FLT_RADIX, FLT_ROUNDS, and DBL_MAX. * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n) * if memory is available and otherwise does something you deem * appropriate. If MALLOC is undefined, malloc will be invoked * directly -- and assumed always to succeed. * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making * memory allocations from a private pool of memory when possible. * When used, the private pool is PRIVATE_MEM bytes long: 2304 bytes, * unless #defined to be a different length. This default length * suffices to get rid of MALLOC calls except for unusual cases, * such as decimal-to-binary conversion of a very long string of * digits. The longest string dtoa can return is about 751 bytes * long. For conversions by strtod of strings of 800 digits and * all dtoa conversions in single-threaded executions with 8-byte * pointers, PRIVATE_MEM >= 7400 appears to suffice; with 4-byte * pointers, PRIVATE_MEM >= 7112 appears adequate. * #define INFNAN_CHECK on IEEE systems to cause strtod to check for * Infinity and NaN (case insensitively). On some systems (e.g., * some HP systems), it may be necessary to #define NAN_WORD0 * appropriately -- to the most significant word of a quiet NaN. * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.) * When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined, * strtod also accepts (case insensitively) strings of the form * NaN(x), where x is a string of hexadecimal digits and spaces; * if there is only one string of hexadecimal digits, it is taken * for the 52 fraction bits of the resulting NaN; if there are two * or more strings of hex digits, the first is for the high 20 bits, * the second and subsequent for the low 32 bits, with intervening * white space ignored; but if this results in none of the 52 * fraction bits being on (an IEEE Infinity symbol), then NAN_WORD0 * and NAN_WORD1 are used instead. * #define MULTIPLE_THREADS if the system offers preemptively scheduled * multiple threads. In this case, you must provide (or suitably * #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed * by FREE_DTOA_LOCK(n) for n = 0 or 1. (The second lock, accessed * in pow5mult, ensures lazy evaluation of only one copy of high * powers of 5; omitting this lock would introduce a small * probability of wasting memory, but would otherwise be harmless.) * You must also invoke freedtoa(s) to free the value s returned by * dtoa. You may do so whether or not MULTIPLE_THREADS is #defined. * #define NO_IEEE_Scale to disable new (Feb. 1997) logic in strtod that * avoids underflows on inputs whose result does not underflow. * If you #define NO_IEEE_Scale on a machine that uses IEEE-format * floating-point numbers and flushes underflows to zero rather * than implementing gradual underflow, then you must also #define * Sudden_Underflow. * #define YES_ALIAS to permit aliasing certain double values with * arrays of ULongs. This leads to slightly better code with * some compilers and was always used prior to 19990916, but it * is not strictly legal and can cause trouble with aggressively * optimizing compilers (e.g., gcc 2.95.1 under -O2). * #define USE_LOCALE to use the current locale's decimal_point value. * #define SET_INEXACT if IEEE arithmetic is being used and extra * computation should be done to set the inexact flag when the * result is inexact and avoid setting inexact when the result * is exact. In this case, dtoa.c must be compiled in * an environment, perhaps provided by #include "dtoa.c" in a * suitable wrapper, that defines two functions, * int get_inexact(void); * void clear_inexact(void); * such that get_inexact() returns a nonzero value if the * inexact bit is already set, and clear_inexact() sets the * inexact bit to 0. When SET_INEXACT is #defined, strtod * also does extra computations to set the underflow and overflow * flags when appropriate (i.e., when the result is tiny and * inexact or when it is a numeric value rounded to +-infinity). * #define NO_ERRNO if strtod should not assign errno = ERANGE when * the result overflows to +-Infinity or underflows to 0. */#include <config.h>#if defined(WORDS_BIGENDIAN) || defined(__arm__) || defined(__ARMEL__)#define IEEE_MC68k#else#define IEEE_8087#endif#define INFNAN_CHECK#include "dtoa.h"#define strtod kjs_strtod#define dtoa kjs_dtoa#define freedtoa kjs_freedtoa#ifndef Long#define Long long#endif#ifndef ULongtypedef unsigned Long ULong;#endif#ifdef DEBUG#include "stdio.h"#define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}#endif#include "stdlib.h"#include "string.h"#ifdef USE_LOCALE#include "locale.h"#endif#ifdef MALLOC#ifdef KR_headersextern char *MALLOC();#elseextern void *MALLOC(size_t);#endif#else#define MALLOC malloc#endif#ifndef Omit_Private_Memory#ifndef PRIVATE_MEM#define PRIVATE_MEM 2304#endif#define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double))static double private_mem[PRIVATE_mem], *pmem_next = private_mem;#endif#undef IEEE_Arith#undef Avoid_Underflow#ifdef IEEE_MC68k#define IEEE_Arith#endif#ifdef IEEE_8087#define IEEE_Arith#endif#include "errno.h"#ifdef Bad_float_h#ifdef IEEE_Arith#define DBL_DIG 15#define DBL_MAX_10_EXP 308#define DBL_MAX_EXP 1024#define FLT_RADIX 2#endif /*IEEE_Arith*/#ifdef IBM#define DBL_DIG 16#define DBL_MAX_10_EXP 75#define DBL_MAX_EXP 63#define FLT_RADIX 16#define DBL_MAX 7.2370055773322621e+75#endif#ifdef VAX#define DBL_DIG 16#define DBL_MAX_10_EXP 38#define DBL_MAX_EXP 127#define FLT_RADIX 2#define DBL_MAX 1.7014118346046923e+38#endif#ifndef LONG_MAX#define LONG_MAX 2147483647#endif#else /* ifndef Bad_float_h */#include "float.h"#endif /* Bad_float_h */#ifndef __MATH_H__#include "math.h"#endif#ifdef __cplusplusextern "C" {#endif#ifndef CONST#ifdef KR_headers#define CONST /* blank */#else#define CONST const#endif#endif#if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined.#endiftypedef union { double d; ULong L[2]; } U;#ifdef YES_ALIAS#define dval(x) x#ifdef IEEE_8087#define word0(x) ((ULong *)&x)[1]#define word1(x) ((ULong *)&x)[0]#else#define word0(x) ((ULong *)&x)[0]#define word1(x) ((ULong *)&x)[1]#endif#else#ifdef IEEE_8087#define word0(x) ((U*)&x)->L[1]#define word1(x) ((U*)&x)->L[0]#else#define word0(x) ((U*)&x)->L[0]#define word1(x) ((U*)&x)->L[1]#endif#define dval(x) ((U*)&x)->d#endif/* The following definition of Storeinc is appropriate for MIPS processors. * An alternative that might be better on some machines is * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff) */#if defined(IEEE_8087) + defined(VAX)#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \((unsigned short *)a)[0] = (unsigned short)c, a++)#else#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \((unsigned short *)a)[1] = (unsigned short)c, a++)#endif/* #define P DBL_MANT_DIG *//* Ten_pmax = floor(P*log(2)/log(5)) *//* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 *//* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) *//* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */#ifdef IEEE_Arith#define Exp_shift 20#define Exp_shift1 20#define Exp_msk1 0x100000#define Exp_msk11 0x100000#define Exp_mask 0x7ff00000#define P 53#define Bias 1023#define Emin (-1022)#define Exp_1 0x3ff00000#define Exp_11 0x3ff00000#define Ebits 11#define Frac_mask 0xfffff#define Frac_mask1 0xfffff#define Ten_pmax 22#define Bletch 0x10#define Bndry_mask 0xfffff#define Bndry_mask1 0xfffff#define LSB 1#define Sign_bit 0x80000000#define Log2P 1#define Tiny0 0#define Tiny1 1#define Quick_max 14#define Int_max 14#ifndef NO_IEEE_Scale#define Avoid_Underflow#ifdef Flush_Denorm /* debugging option */#undef Sudden_Underflow#endif#endif#ifndef Flt_Rounds#ifdef FLT_ROUNDS#define Flt_Rounds FLT_ROUNDS#else#define Flt_Rounds 1#endif#endif /*Flt_Rounds*/#ifdef Honor_FLT_ROUNDS#define Rounding rounding#undef Check_FLT_ROUNDS#define Check_FLT_ROUNDS#else#define Rounding Flt_Rounds#endif#else /* ifndef IEEE_Arith */#undef Check_FLT_ROUNDS#undef Honor_FLT_ROUNDS#undef SET_INEXACT#undef Sudden_Underflow#define Sudden_Underflow#ifdef IBM#undef Flt_Rounds#define Flt_Rounds 0#define Exp_shift 24#define Exp_shift1 24#define Exp_msk1 0x1000000#define Exp_msk11 0x1000000#define Exp_mask 0x7f000000#define P 14#define Bias 65#define Exp_1 0x41000000#define Exp_11 0x41000000#define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */#define Frac_mask 0xffffff#define Frac_mask1 0xffffff#define Bletch 4#define Ten_pmax 22#define Bndry_mask 0xefffff#define Bndry_mask1 0xffffff#define LSB 1#define Sign_bit 0x80000000#define Log2P 4#define Tiny0 0x100000#define Tiny1 0#define Quick_max 14#define Int_max 15#else /* VAX */#undef Flt_Rounds#define Flt_Rounds 1#define Exp_shift 23#define Exp_shift1 7#define Exp_msk1 0x80#define Exp_msk11 0x800000#define Exp_mask 0x7f80#define P 56#define Bias 129#define Exp_1 0x40800000#define Exp_11 0x4080#define Ebits 8#define Frac_mask 0x7fffff#define Frac_mask1 0xffff007f#define Ten_pmax 24#define Bletch 2#define Bndry_mask 0xffff007f#define Bndry_mask1 0xffff007f#define LSB 0x10000#define Sign_bit 0x8000#define Log2P 1#define Tiny0 0x80#define Tiny1 0#define Quick_max 15#define Int_max 15#endif /* IBM, VAX */#endif /* IEEE_Arith */#ifndef IEEE_Arith#define ROUND_BIASED#endif#ifdef RND_PRODQUOT#define rounded_product(a,b) a = rnd_prod(a, b)#define rounded_quotient(a,b) a = rnd_quot(a, b)#ifdef KR_headersextern double rnd_prod(), rnd_quot();#elseextern double rnd_prod(double, double), rnd_quot(double, double);#endif#else#define rounded_product(a,b) a *= b#define rounded_quotient(a,b) a /= b#endif#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))#define Big1 0xffffffff#ifndef Pack_32#define Pack_32#endif#ifdef KR_headers#define FFFFFFFF ((((unsigned long)0xffff)<<16)|(unsigned long)0xffff)#else#define FFFFFFFF 0xffffffffUL#endif#ifdef NO_LONG_LONG#undef ULLong#ifdef Just_16#undef Pack_32/* When Pack_32 is not defined, we store 16 bits per 32-bit Long. * This makes some inner loops simpler and sometimes saves work * during multiplications, but it often seems to make things slightly * slower. Hence the default is now to store 32 bits per Long. */#endif#else /* long long available */#ifndef Llong#define Llong long long#endif#ifndef ULLong#define ULLong unsigned Llong#endif#endif /* NO_LONG_LONG */#ifndef MULTIPLE_THREADS#define ACQUIRE_DTOA_LOCK(n) /*nothing*/#define FREE_DTOA_LOCK(n) /*nothing*/#endif#define Kmax 15 structBigint { struct Bigint *next; int k, maxwds, sign, wds; ULong x[1]; }; typedef struct Bigint Bigint; static Bigint *freelist[Kmax+1]; static Bigint *Balloc#ifdef KR_headers (k) int k;#else (int k)#endif{ int x; Bigint *rv;#ifndef Omit_Private_Memory unsigned int len;#endif ACQUIRE_DTOA_LOCK(0); if ((rv = freelist[k])) { freelist[k] = rv->next; } else { x = 1 << k;#ifdef Omit_Private_Memory rv = (Bigint *)MALLOC(sizeof(Bigint) + (x-1)*sizeof(ULong));#else len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1) /sizeof(double); if (pmem_next - private_mem + len <= PRIVATE_mem) { rv = (Bigint*)pmem_next; pmem_next += len; } else rv = (Bigint*)MALLOC(len*sizeof(double));#endif rv->k = k; rv->maxwds = x; } FREE_DTOA_LOCK(0); rv->sign = rv->wds = 0; return rv; } static voidBfree#ifdef KR_headers (v) Bigint *v;#else (Bigint *v)#endif{ if (v) { ACQUIRE_DTOA_LOCK(0); v->next = freelist[v->k]; freelist[v->k] = v; FREE_DTOA_LOCK(0); } }#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \y->wds*sizeof(Long) + 2*sizeof(int)) static Bigint *multadd#ifdef KR_headers (b, m, a) Bigint *b; int m, a;#else (Bigint *b, int m, int a) /* multiply by m and add a */#endif{ int i, wds;#ifdef ULLong ULong *x; ULLong carry, y;#else ULong carry, *x, y;#ifdef Pack_32 ULong xi, z;#endif#endif Bigint *b1; wds = b->wds; x = b->x; i = 0; carry = a; do {#ifdef ULLong y = *x * (ULLong)m + carry; carry = y >> 32; *x++ = y & FFFFFFFF;#else#ifdef Pack_32 xi = *x; y = (xi & 0xffff) * m + carry; z = (xi >> 16) * m + (y >> 16); carry = z >> 16; *x++ = (z << 16) + (y & 0xffff);#else y = *x * m + carry; carry = y >> 16; *x++ = y & 0xffff;#endif#endif } while(++i < wds); if (carry) { if (wds >= b->maxwds) { b1 = Balloc(b->k+1); Bcopy(b1, b); Bfree(b); b = b1; } b->x[wds++] = carry; b->wds = wds; } return b; } static Bigint *s2b#ifdef KR_headers (s, nd0, nd, y9) CONST char *s; int nd0, nd; ULong y9;#else (CONST char *s, int nd0, int nd, ULong y9)#endif{ Bigint *b; int i, k; Long x, y; x = (nd + 8) / 9; for(k = 0, y = 1; x > y; y <<= 1, k++) ;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -