📄 multilayerperceptronoperator.java
字号:
package eti.bi.alphaminer.patch.standard.operation.operator;
import java.util.Vector;
import com.prudsys.pdm.Core.MiningAlgorithm;
import com.prudsys.pdm.Core.MiningAlgorithmSpecification;
import com.prudsys.pdm.Core.MiningAttribute;
import com.prudsys.pdm.Core.MiningException;
import com.prudsys.pdm.Core.MiningModel;
import com.prudsys.pdm.Core.NumericAttribute;
import com.prudsys.pdm.Models.Supervised.SupervisedMiningSettings;
import com.prudsys.pdm.Utils.GeneralUtils;
import eti.bi.alphaminer.core.handler.ICaseHandler;
import eti.bi.alphaminer.operation.operator.INodeInfo;
import eti.bi.alphaminer.operation.operator.ModelOperator;
import eti.bi.alphaminer.operation.operator.Operator;
import eti.bi.alphaminer.vo.BIData;
import eti.bi.alphaminer.vo.BIModel;
import eti.bi.alphaminer.vo.BIObject;
import eti.bi.alphaminer.vo.IBIData;
import eti.bi.alphaminer.vo.IBIModel;
import eti.bi.alphaminer.vo.IOperatorNode;
import eti.bi.common.Locale.Resource;
import eti.bi.exception.AppException;
import eti.bi.exception.SysException;
public class MultilayerPerceptronOperator extends ModelOperator{
/* Parameter name for NavieBayes Operator in BIML */
public static String GUI = "gui";
public static String AUTOBUILD = "autoBuild";
public static String DECAY = "decay";
public static String HIDDENLAYERS = "hiddenLayers";
public static String LEARNINGRATE = "learningRate";
public static String MOMENTUM = "momentum";
public static String NOMINALTOBINARYFILTER = "nominalToBinaryFilter";
public static String NORMALIZEATTRIBUTES = "normalizeAttributes";
public static String NORMALIZENUMERICCLASS = "normalizeNumericClass";
public static String RANDOMSEED = "randomSeed";
public static String RESET = "reset";
public static String TRAININGTIME = "trainingTime";
public static String VALIDATIONSETSIZE = "validationSetSize";
public static String VALIDATIONTHRESHOLD = "validationThreshold";
public static String DEFAULT_GUI = "";
public static String DEFAULT_autoBuild = "";
public static String DEFAULT_decay = "";
public static String DEFAULT_hiddenLayers = "1";
public static String DEFAULT_learningRate = "0.3";
public static String DEFAULT_momentum = "0.2";
public static String DEFAULT_nominalToBinaryFilter = "";
public static String DEFAULT_normalizeAttributes = "";
public static String DEFAULT_normalizeNumericClass = "";
public static String DEFAULT_randomSeed = "0";
public static String DEFAULT_reset = "";
public static String DEFAULT_trainingTime = "500";
public static String DEFAULT_validationSetSize = "0";
public static String DEFAULT_validationThreshold = "20";
/* Parameter name for MiningSettingSpecification and MiningAlgorithm */
public static final String ALGORITHM_NAME = "MultilayerPerceptron (Weka)";
private static String MAP_WEKA_CLASS_PARAMETERS = "wekaClassParameters";
/**
* @param a_CaseID
* @param a_CaseWindow
* @param aOperatorInfo
*/
public MultilayerPerceptronOperator(String a_CaseID, INodeInfo aNodeInfo, ICaseHandler aCaseHandler) {
super(a_CaseID, aNodeInfo, aCaseHandler);
setDefaultModelName(Resource.srcStr("MultilayerPerceptron"));
//2006/07/29 Xiaojun Chen
PredictionAssessmentOperator.registerParentsDefinitionID(aNodeInfo.getDefinitionID());
ScoreOperator.registerParentsDefinitionID(aNodeInfo.getDefinitionID());
}
/**
*
*/
private static final long serialVersionUID = 1L;
/**
* Set node id and update operator text of the DecisionTreeOperator at the same time.
* @param a_NodeID ID of the node
*/
public void setNodeID(String a_NodeID) {
setLabel(getDescription() + " [" + a_NodeID + "]");
setDefaultModelName(Resource.srcStr("MultilayerPerceptron")+"_" + a_NodeID);
super.setNodeID(a_NodeID);
}
/**
* Set node id and update operator text of the DecisionTreeOperator at the same time.
* @param a_NodeID ID of the node
*/
public void setDescription(String a_Description) {
m_Description = a_Description;
setLabel(m_Description + " [" + m_NodeID + "]");
setDefaultModelName(Resource.srcStr("MultilayerPerceptron")+"_" + m_NodeID);
}
@SuppressWarnings("unchecked")
public void execute(IOperatorNode a_OperatorNode, Vector a_Parents)
throws SysException, AppException, MiningException {
String gui = (String) a_OperatorNode.getParameterValue(GUI);
if (gui == null) {
gui = DEFAULT_GUI;
}
String autoBuild = (String) a_OperatorNode.getParameterValue(AUTOBUILD);
if (autoBuild == null) {
autoBuild = DEFAULT_autoBuild;
}
String decay = (String) a_OperatorNode.getParameterValue(DECAY);
if (decay == null) {
decay = DEFAULT_decay;
}
String hiddenLayers = (String) a_OperatorNode.getParameterValue(HIDDENLAYERS);
if (hiddenLayers == null) {
hiddenLayers = DEFAULT_hiddenLayers;
}
String learningRate = (String) a_OperatorNode.getParameterValue(LEARNINGRATE);
if (learningRate == null) {
learningRate = DEFAULT_learningRate;
}
String momentum = (String) a_OperatorNode.getParameterValue(MOMENTUM);
if (momentum == null) {
momentum = DEFAULT_momentum;
}
String nominalToBinaryFilter = (String) a_OperatorNode.getParameterValue(NOMINALTOBINARYFILTER);
if (nominalToBinaryFilter == null) {
nominalToBinaryFilter = DEFAULT_nominalToBinaryFilter;
}
String normalizeAttributes = (String) a_OperatorNode.getParameterValue(NORMALIZEATTRIBUTES);
if (normalizeAttributes == null) {
normalizeAttributes = DEFAULT_normalizeAttributes;
}
String normalizeNumericClass = (String) a_OperatorNode.getParameterValue(NORMALIZENUMERICCLASS);
if (normalizeNumericClass == null) {
normalizeNumericClass = DEFAULT_normalizeNumericClass;
}
String randomSeed = (String) a_OperatorNode.getParameterValue(RANDOMSEED);
if (randomSeed == null) {
randomSeed = DEFAULT_randomSeed;
}
String reset = (String) a_OperatorNode.getParameterValue(RESET);
if (reset == null) {
reset = DEFAULT_reset;
}
String trainingTime = (String) a_OperatorNode.getParameterValue(TRAININGTIME);
if (trainingTime == null) {
trainingTime = DEFAULT_trainingTime;
}
String validationSetSize = (String) a_OperatorNode.getParameterValue(VALIDATIONSETSIZE);
if (validationSetSize == null) {
validationSetSize = DEFAULT_validationSetSize;
}
String validationThreshold = (String) a_OperatorNode.getParameterValue(VALIDATIONTHRESHOLD);
if (validationThreshold == null) {
validationThreshold = DEFAULT_validationThreshold;
}
String multilayerPerceptronOperatorParameters = "-L "+learningRate+" -N "+" "+trainingTime +" -M "+" "+ momentum+" "+" -V "+" "+validationSetSize+" "+"-S"+" "+randomSeed+" "+"-E"+
" "+validationThreshold+" "+" -H "+hiddenLayers + autoBuild +nominalToBinaryFilter + normalizeNumericClass + normalizeAttributes + reset +decay + gui;
/* Get input bi object from parent node */
Operator parentOp = (Operator)a_Parents.elementAt(0);
setInputBIObject(parentOp.getOutputBIObject());
IBIData aInputBIData = getInputBIObject().getBIData();
aInputBIData.getMiningStoredData().reset();
/* Prepare output data model */
BIData aOutputBIData = new BIData(getCaseID(), getNodeID());
aOutputBIData.setTargetAttribute(aInputBIData.getTargetAttribute());
aOutputBIData.setTransformActionHistory(aInputBIData.getTransformActionHistory());
aOutputBIData.setTargetAttribute(aInputBIData.getTargetAttribute());
aOutputBIData.setMiningStoredData(aInputBIData.getMiningStoredData());
BIModel aOutputBIModel = new BIModel(getCaseID(), getNodeID(), IBIModel.TYPE_CLASSIFIER);
/* Check attributes */
MiningAttribute targetAttribute = aInputBIData.getTargetAttribute();
aOutputBIModel.setTargetAttribute(targetAttribute);
if (targetAttribute==null)
{
throw new AppException("Categorical Target attribute is missing. Please add target attribute by using Data Set Attribute Node.");
}else if (targetAttribute instanceof NumericAttribute)
{
m_SystemMessageHandler.appendMessage("Attribute \""+targetAttribute.getName() + "\" is not Categorical.");
throw new AppException("Attribute \""+targetAttribute.getName() + "\" should be Categorical.");
}
/*Create MiningSettings object and assign metadata*/
SupervisedMiningSettings miningSettings = new SupervisedMiningSettings();
miningSettings.setDataSpecification(aInputBIData.getMetaData());
/* Assign settings */
miningSettings.setTarget(targetAttribute);
try {
miningSettings.verifySettings();
} catch (Exception e)
{
m_SystemMessageHandler.appendMessage("Invalid parameters in building the Decision Tree model.");
throw new AppException("Invalid parameters in building the Decision Tree model.");
}
/* Set MiningSettings */
aOutputBIModel.setMiningSettings(miningSettings);
/* Get default mining algorithm specification from 'algorithms.xml' */
MiningAlgorithmSpecification miningAlgorithmSpecification =
MiningAlgorithmSpecification.getMiningAlgorithmSpecification( ALGORITHM_NAME,getNodeInfo());
if( miningAlgorithmSpecification == null )
throw new MiningException( "Can't find MultilayerPerceptron classification method." );
/* Get class name from algorithms specification */
String className = miningAlgorithmSpecification.getClassname();
if( className == null )
throw new MiningException( "className attribute expected." );
/* Set MiningAlgorithmSpecification */
miningAlgorithmSpecification.setMAPValue(MAP_WEKA_CLASS_PARAMETERS, multilayerPerceptronOperatorParameters);
aOutputBIModel.setMiningAlgorithmSpecification(miningAlgorithmSpecification);
displayMiningAlgSpecParameters(miningAlgorithmSpecification);
/* Set and display mining parameters */
GeneralUtils.displayMiningAlgSpecParameters(miningAlgorithmSpecification);
/* Create algorithm object with default values */
MiningAlgorithm algorithm = GeneralUtils.createMiningAlgorithmInstance(className, this.getClass().getClassLoader());
algorithm.setMiningInputStream(aInputBIData.getMiningStoredData());
algorithm.setMiningSettings(miningSettings);
algorithm.setMiningAlgorithmSpecification(miningAlgorithmSpecification);
try
{
algorithm.verify();
} catch(IllegalArgumentException e)
{
throw new MiningException(e.getMessage());
}
MiningModel model = algorithm.buildModel();
m_SystemMessageHandler.appendMessage(Resource.srcStr("calculationtime")+" [s]: " + algorithm.getTimeSpentToBuildModel()+Resource.srcStr("ms"));
m_SystemMessageHandler.nextLine();
aOutputBIModel.setMiningModel(model);
aOutputBIModel.setModelName(m_DefaultModelName);
m_OutputBIObject.setBIData(aOutputBIData);
m_OutputBIObject.setBIModel(aOutputBIModel);
//a_OperatorNode.setParameterValue("Temporary model", aOutputBIModel.getTempBIModelPath());
//aOutputBIModel.writeTempBIModel();
}
/**
* Test if the NavieBayes Operator contains any results.
* @return true if NavieBayes Operator has result; false otherwise.
*/
public boolean hasResult() throws SysException {
if (m_OutputBIObject != null)
{
return (m_OutputBIObject.hasResult(BIObject.DATA) &&
m_OutputBIObject.hasResult(BIObject.MODEL));
}else
{
return false;
}
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -