📄 linearregressionoperator.java
字号:
package eti.bi.alphaminer.patch.standard.operation.operator;
import java.util.Vector;
import com.prudsys.pdm.Core.MiningException;
import eti.bi.alphaminer.operation.operator.ModelOperator;
import eti.bi.alphaminer.vo.IOperatorNode;
import eti.bi.exception.AppException;
import eti.bi.exception.SysException;
import com.prudsys.pdm.Core.MiningAlgorithm;
import com.prudsys.pdm.Core.MiningAlgorithmSpecification;
import com.prudsys.pdm.Core.MiningAttribute;
import com.prudsys.pdm.Core.MiningModel;
import com.prudsys.pdm.Core.NumericAttribute;
import com.prudsys.pdm.Models.Supervised.SupervisedMiningSettings;
import com.prudsys.pdm.Utils.GeneralUtils;
import eti.bi.alphaminer.core.handler.ICaseHandler;
import eti.bi.alphaminer.operation.operator.INodeInfo;
import eti.bi.alphaminer.operation.operator.Operator;
import eti.bi.common.Locale.Resource;
import eti.bi.alphaminer.vo.BIData;
import eti.bi.alphaminer.vo.BIModel;
import eti.bi.alphaminer.vo.BIObject;
import eti.bi.alphaminer.vo.IBIData;
import eti.bi.alphaminer.vo.IBIModel;
public class LinearRegressionOperator extends ModelOperator{
/* Parameter name for MiningSettingSpecification and MiningAlgorithm */
public static final String ALGORITHM_NAME = "LinearRegression (Weka)";
private static String MAP_WEKA_CLASS_PARAMETERS = "wekaClassParameters";
/* Parameter name for LinearRegression Operator in BIML */
public static String ATTRIBUTE_SELECTION_METHOD = "attribute selection method";
public static String ELIMINATE_COLINEAR_ATTRIBUTES = "eliminate colinear attributes";
public static String RIDGE = "ridge";
public static String DEBUG = "debug";
/* Default parameter value for LinearRegression Operator */
public static String DEFAULT_ATTRIBUTE_SELECTION_METHOD = "0";
public static String DEFAULT_ELIMINATE_COLINEAR_ATTRIBUTES= "";
public static String DEFAULT_RIDGE = String.valueOf(0.00000001);
public static String DEFAULT_DEBUG = "-D";
public LinearRegressionOperator(String a_CaseID, INodeInfo aNodeInfo,
ICaseHandler aCaseHandler) {
super(a_CaseID, aNodeInfo, aCaseHandler);
m_DefaultModelName = "LinearRegression model";
//2006/07/29 Xiaojun Chen
PredictionAssessmentOperator.registerParentsDefinitionID(aNodeInfo.getDefinitionID());
ScoreOperator.registerParentsDefinitionID(aNodeInfo.getDefinitionID());
}
private static final long serialVersionUID = 965485384848913438L;
@Override
public void setNodeID(String a_NodeID) {
setLabel(getDescription() + " [" + a_NodeID + "]");
setDefaultModelName("LinearRegression_" + a_NodeID);
super.setNodeID(a_NodeID);
}
public void setDescription(String a_Description) {
m_Description = a_Description;
setLabel(m_Description + " [" + m_NodeID + "]");
setDefaultModelName("LinearRegression_" + m_NodeID);
}
@SuppressWarnings("unchecked")
public void execute(IOperatorNode a_OperatorNode, Vector a_Parents)
throws SysException, AppException, MiningException {
/* Get parameter from user input */
String ridge = (String) a_OperatorNode.getParameterValue(RIDGE);
if (ridge == null) {
ridge = DEFAULT_RIDGE;
}
String debug = (String) a_OperatorNode.getParameterValue(DEBUG);
if (debug == null) {
debug = DEFAULT_DEBUG;
}
String attributeSelection = (String) a_OperatorNode.getParameterValue(ATTRIBUTE_SELECTION_METHOD);
if (attributeSelection == null) {
attributeSelection = DEFAULT_ATTRIBUTE_SELECTION_METHOD;
}
String eliminateColinearAttribute = (String) a_OperatorNode.getParameterValue(ELIMINATE_COLINEAR_ATTRIBUTES);
if (eliminateColinearAttribute == null) {
eliminateColinearAttribute = DEFAULT_ELIMINATE_COLINEAR_ATTRIBUTES;
}
String linearRegressionParameters = debug+ " -S "+ attributeSelection + " "+ eliminateColinearAttribute + " -R " + ridge;
/* Get input bi object from parent node */
Operator parentOp = (Operator) a_Parents.elementAt(0);
setInputBIObject(parentOp.getOutputBIObject());
IBIData aInputBIData = getInputBIObject().getBIData();
aInputBIData.getMiningStoredData().reset();
if (!aInputBIData.hasResult()) {
throw new SysException("No data inputed.");
}
/* Prepare output data model */
BIData aOutputBIData = new BIData(getCaseID(), getNodeID());
aOutputBIData.setTargetAttribute(aInputBIData.getTargetAttribute());
aOutputBIData.setTransformActionHistory(aInputBIData
.getTransformActionHistory());
aOutputBIData.setTargetAttribute(aInputBIData.getTargetAttribute());
aOutputBIData.setMiningStoredData(aInputBIData.getMiningStoredData());
BIModel aOutputBIModel = new BIModel(getCaseID(), getNodeID(),
IBIModel.TYPE_CLASSIFIER);
/* Check attributes */
MiningAttribute targetAttribute = aInputBIData.getTargetAttribute();
aOutputBIModel.setTargetAttribute(targetAttribute);
if (targetAttribute==null)
{
m_SystemMessageHandler.appendMessage("Categorical Target attribute is missing. Please add target attribute by using Data Set Attribute Node.");
throw new AppException("Categorical Target attribute is missing. Please add target attribute by using Data Set Attribute Node.");
}else if (!(targetAttribute instanceof NumericAttribute))
{
m_SystemMessageHandler.appendMessage("Attribute \""+targetAttribute.getName() + "\" is not Numeric.");
throw new AppException("Attribute \""+targetAttribute.getName() + "\" is not Numberic.");
}
/* Create MiningSettings object and assign metadata */
SupervisedMiningSettings miningSettings = new SupervisedMiningSettings();
miningSettings.setDataSpecification(aInputBIData.getMetaData());
/* Assign settings */
miningSettings.setTarget(targetAttribute);
try {
miningSettings.verifySettings();
} catch (Exception e) {
m_SystemMessageHandler.appendMessage(
"Invalid parameters in building LinearRegression model.");
throw new AppException(
"Invalid parameters in building the LinearRegression model.");
}
/* Set MiningSettings */
aOutputBIModel.setMiningSettings(miningSettings);
/* Get default mining algorithm specification from 'algorithms.xml' */
MiningAlgorithmSpecification miningAlgorithmSpecification = MiningAlgorithmSpecification
.getMiningAlgorithmSpecification(ALGORITHM_NAME, getNodeInfo());
if (miningAlgorithmSpecification == null)
throw new MiningException("Can't find LinearRegression classification method.");
/* Get class name from algorithms specification */
String className = miningAlgorithmSpecification.getClassname();
if (className == null)
throw new MiningException("className attribute expected.");
/* Set MiningAlgorithmSpecification */
miningAlgorithmSpecification.setMAPValue(MAP_WEKA_CLASS_PARAMETERS,
linearRegressionParameters);//
aOutputBIModel.setMiningAlgorithmSpecification(miningAlgorithmSpecification);
displayMiningAlgSpecParameters(miningAlgorithmSpecification);
/* Set and display mining parameters */
GeneralUtils
.displayMiningAlgSpecParameters(miningAlgorithmSpecification);
/* Create algorithm object with default values */
MiningAlgorithm algorithm = GeneralUtils
.createMiningAlgorithmInstance(className, this.getClass().getClassLoader());
algorithm.setMiningInputStream(aInputBIData.getMiningStoredData());
algorithm.setMiningSettings(miningSettings);
algorithm.setMiningAlgorithmSpecification(miningAlgorithmSpecification);
try {
algorithm.verify();
} catch (IllegalArgumentException e) {
throw new MiningException(e.getMessage());
}
MiningModel model = algorithm.buildModel();
m_SystemMessageHandler.appendMessage( Resource
.srcStr("calculationtime")
+ " [s]: "
+ algorithm.getTimeSpentToBuildModel()
+ Resource.srcStr("ms"));
m_SystemMessageHandler.nextLine();
aOutputBIModel.setMiningModel(model);
aOutputBIModel.setModelName(m_DefaultModelName);
m_OutputBIObject.setBIData(aOutputBIData);
m_OutputBIObject.setBIModel(aOutputBIModel);
//a_OperatorNode.setParameterValue("Temporary model", aOutputBIModel.getTempBIModelPath());
//aOutputBIModel.writeTempBIModel();
}
/**
* Test if the SMO Operator contains any results.
*
* @return true if SMO Operator has result; false otherwise.
*/
/*
* public boolean hasResult() throws SysException { // TODO Auto-generated
* method stub return false; }
*/
public boolean hasResult() throws SysException {
if (m_OutputBIObject != null) {
return (m_OutputBIObject.hasResult(BIObject.DATA) && m_OutputBIObject
.hasResult(BIObject.MODEL));
} else {
return false;
}
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -