⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 regressionoperator.java

📁 一个数据挖掘软件ALPHAMINERR的整个过程的JAVA版源代码
💻 JAVA
字号:
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
* $Author$
* $Date$
* $Revision$
*/
package eti.bi.alphaminer.patch.standard.operation.operator;


import java.util.Vector;


import com.prudsys.pdm.Core.CategoricalAttribute;
import com.prudsys.pdm.Core.MiningAlgorithm;
import com.prudsys.pdm.Core.MiningAlgorithmSpecification;
import com.prudsys.pdm.Core.MiningAttribute;
import com.prudsys.pdm.Core.MiningException;
import com.prudsys.pdm.Core.MiningModel;
import com.prudsys.pdm.Models.Supervised.SupervisedMiningSettings;
import com.prudsys.pdm.Utils.GeneralUtils;

import eti.bi.alphaminer.core.handler.ICaseHandler;
import eti.bi.alphaminer.operation.operator.INodeInfo;
import eti.bi.alphaminer.operation.operator.ModelOperator;
import eti.bi.alphaminer.operation.operator.Operator;
import eti.bi.common.Locale.Resource;
import eti.bi.alphaminer.vo.BIData;
import eti.bi.alphaminer.vo.BIModel;
import eti.bi.alphaminer.vo.BIObject;
import eti.bi.alphaminer.vo.IBIData;
import eti.bi.alphaminer.vo.IBIModel;
import eti.bi.alphaminer.vo.IOperatorNode;
import eti.bi.exception.AppException;
import eti.bi.exception.SysException;

/**
 * RegressionOperator is a kind of Operator
 */
public class RegressionOperator extends ModelOperator {

	/**
	 * 
	 */
	private static final long serialVersionUID = 1L;


	/**
	 * @param a_CaseID
	 * @param a_CaseWindow
	 * @param aOperatorInfo
	 */
	public RegressionOperator(String a_CaseID, INodeInfo aNodeInfo, ICaseHandler aCaseHandler) {
		super(a_CaseID, aNodeInfo, aCaseHandler);
		//2006/07/29 Xiaojun Chen
		PredictionAssessmentOperator.registerParentsDefinitionID(aNodeInfo.getDefinitionID());
		ScoreOperator.registerParentsDefinitionID(aNodeInfo.getDefinitionID());
	}

	/* Parameter name for Regression Operator in BIML */
	public static String ITERATION_NUMBER = "Iteration number";
	public static String RIDGE = "Ridge";
	
	/* Default parameter value for Regression Operator */
	public static String DEFAULT_ITERATION_NUMBER = "-1";
	public static String DEFAULT_RIDGE = "0.00000001";
	
	/* Parameter name for MiningSettingSpecification and MiningAlgorithm */
	private static String ALGORITHM_NAME = "Logistic (Weka)";
	private static String MAP_WEKA_CLASS_PARAMETERS = "wekaClassParameters";
	

	/**
	 * Set node id and update operator text of the DecisionTreeOperator at the same time.
	 * @param a_NodeID ID of the node
	 */
	public void setNodeID(String a_NodeID) {
		setLabel(getDescription() + " [" + a_NodeID + "]");
		setDefaultModelName(Resource.srcStr("LogisticRegression")+"_" + a_NodeID);
		super.setNodeID(a_NodeID);
	}
	
	/**
	 * Set node id and update operator text of the DecisionTreeOperator at the same time.
	 * @param a_NodeID ID of the node
	 */
	public void setDescription(String a_Description) {
		m_Description = a_Description;
		setLabel(m_Description + " [" + m_NodeID + "]");
		setDefaultModelName(Resource.srcStr("LogisticRegression")+"_" + m_NodeID);
	}
	
	
	/**
	 * Test if the Regression Operator contains any results.
	 * @return true if Regression Operator has result; false otherwise.
	 */
	public boolean hasResult() {
		if (m_OutputBIObject != null)
		{
			return (m_OutputBIObject.hasResult(BIObject.DATA) &&
					m_OutputBIObject.hasResult(BIObject.MODEL));
		}else
		{
			return false;
		}
	}

	/**
	 * Build logistic regression model for this Regression Operator.
	 * @param a_OperatorNode Operator Node represented by this Regression Operator.
	 * @param a_Parents a Vector storing node IDs of parent nodes of this Regression Operator.
	 */
	public void execute(IOperatorNode a_OperatorNode, Vector a_Parents) 
	throws MiningException, AppException, SysException{
		/* Get parameter from user input */
		String ridge = (String) a_OperatorNode.getParameterValue(RIDGE);
		if (ridge==null)
			ridge = DEFAULT_RIDGE;
		String iteration = (String) a_OperatorNode.getParameterValue(ITERATION_NUMBER);
		if (iteration==null)
			iteration = DEFAULT_ITERATION_NUMBER;
	
		String logisticParameters = "-R " + ridge + " -M " + iteration;
		
		/* Get input bi object from parent node */
		Operator parentOp = (Operator)a_Parents.elementAt(0);
		setInputBIObject(parentOp.getOutputBIObject());
		IBIData aInputBIData = getInputBIObject().getBIData();
		aInputBIData.getMiningStoredData().reset();
	
		/* Prepare output data model */
		BIData aOutputBIData = new BIData(getCaseID(), getNodeID());
		aOutputBIData.setTargetAttribute(aInputBIData.getTargetAttribute());
		aOutputBIData.setTransformActionHistory(aInputBIData.getTransformActionHistory());
		aOutputBIData.setTargetAttribute(aInputBIData.getTargetAttribute());
		aOutputBIData.setMiningStoredData(aInputBIData.getMiningStoredData());
		BIModel aOutputBIModel = new BIModel(getCaseID(), getNodeID(), IBIModel.TYPE_REGRESSION);
		
		/* Execute model building */
		MiningAttribute targetAttribute = aInputBIData.getTargetAttribute();
		aOutputBIModel.setTargetAttribute(targetAttribute);
		if (targetAttribute==null)
		{
			m_SystemMessageHandler.appendMessage("Categorical Target attribute is missing. Please add target attribute by using Data Set Attribute Node.");
			throw new AppException("Categorical Target attribute is missing. Please add target attribute by using Data Set Attribute Node.");
		}else if (!(targetAttribute instanceof CategoricalAttribute))
		{
			m_SystemMessageHandler.appendMessage("Attribute \""+targetAttribute.getName() + "\" is not Categorical.");
			throw new AppException("Attribute \""+targetAttribute.getName() + "\" is not Categorical.");
		}
		
		//Only process bounded target variable. For unbounded categorical attribute, the 
		//space complexity of the Regression algorithm is O(NC*NA), where NC is the number of values 
		//in the target attribute and NA is the number of attributes. This can easily lead to "out of
		//memory" error. TWang. Mar 23, 2005.
		if(((CategoricalAttribute)targetAttribute).isUnboundedCategories()){
			m_SystemMessageHandler.appendMessage("Categorical Target attribute must be bounded.");
			throw new AppException("Attribute \""+targetAttribute.getName() + "\" should be a bounded Categorical attribute.");
		}
		//>> END Twang.

	    /* Create MiningSettings object and assign metadata */
	    SupervisedMiningSettings miningSettings = new SupervisedMiningSettings();
	    miningSettings.setDataSpecification(aInputBIData.getMetaData());

	    /* Assign settings */
	    miningSettings.setTarget(targetAttribute);		
	    try {
	    	miningSettings.verifySettings();
	    } catch (Exception e)
		{
	    	m_SystemMessageHandler.appendMessage("Invalid parameters in building the Regression model.");
	    	throw new AppException("Invalid parameters in building the Regression model.");
	    }
	    
		/* Set MiningSettings */
		aOutputBIModel.setMiningSettings(miningSettings);

	    /* Get default mining algorithm specification from 'algorithms.xml' */
	    MiningAlgorithmSpecification miningAlgorithmSpecification =
	        MiningAlgorithmSpecification.getMiningAlgorithmSpecification( ALGORITHM_NAME, getNodeInfo());

	    if( miningAlgorithmSpecification == null )
	      throw new MiningException( "Can't find weka classification method." );

	    /* Get class name from algorithms specification */
	    String className = miningAlgorithmSpecification.getClassname();
	    if( className == null )
	      throw new MiningException( "className attribute expected." );

		/* Set MiningAlgorithmSpecification */
		miningAlgorithmSpecification.setMAPValue(MAP_WEKA_CLASS_PARAMETERS, logisticParameters);
		aOutputBIModel.setMiningAlgorithmSpecification(miningAlgorithmSpecification);
		displayMiningAlgSpecParameters(miningAlgorithmSpecification);
		
	    /* Set and display mining parameters */
	    GeneralUtils.displayMiningAlgSpecParameters(miningAlgorithmSpecification);

	    /* Create algorithm object with default values */
	    MiningAlgorithm algorithm = GeneralUtils.createMiningAlgorithmInstance(className, this.getClass().getClassLoader());
						
		algorithm.setMiningInputStream(aInputBIData.getMiningStoredData());
		algorithm.setMiningSettings(miningSettings);
		algorithm.setMiningAlgorithmSpecification(miningAlgorithmSpecification);
		try
		{
			algorithm.verify();
		} catch(IllegalArgumentException e)
		{
			throw new MiningException(e.getMessage());
		}
		  
		MiningModel model = algorithm.buildModel();
		m_SystemMessageHandler.appendMessage(Resource.srcStr("calculationtime")+" [s]: " + algorithm.getTimeSpentToBuildModel()+Resource.srcStr("ms"));
		m_SystemMessageHandler.nextLine();
		m_SystemMessageHandler.nextLine();
		
		/* set output mining data and model to the output mining object */ 
		aOutputBIModel.setMiningModel(model);
//		aOutputBIModel.setModelName("Logistic Regression_"+a_OperatorNode.getNodeID());
		aOutputBIModel.setModelName(getDefaultModelName());
		m_OutputBIObject.setBIData(aOutputBIData);	
		m_OutputBIObject.setBIModel(aOutputBIModel);
	
		/* set run time parameter value to the node object (It needs to be stored in the BIML) */
		//a_OperatorNode.setParameterValue("Temporary model", aOutputBIModel.getTempBIModelPath());		
	
		//aOutputBIModel.writeTempBIModel();		
	}
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -