📄 smooperator.java
字号:
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
/*
* $Author: XiaoguangXu
* $Date: 2006/04/16 11:05:12
* $Revision: 2.0
*/
/* @author XiaoguangXu HITSZ-ICE */
package eti.bi.alphaminer.patch.standard.operation.operator;
import java.util.Vector;
import com.prudsys.pdm.Core.MiningException;
import eti.bi.alphaminer.operation.operator.ModelOperator;
import eti.bi.alphaminer.vo.IOperatorNode;
import eti.bi.exception.AppException;
import eti.bi.exception.SysException;
import com.prudsys.pdm.Core.MiningAlgorithm;
import com.prudsys.pdm.Core.MiningAlgorithmSpecification;
import com.prudsys.pdm.Core.MiningAttribute;
import com.prudsys.pdm.Core.MiningModel;
import com.prudsys.pdm.Core.NumericAttribute;
import com.prudsys.pdm.Models.Supervised.SupervisedMiningSettings;
import com.prudsys.pdm.Utils.GeneralUtils;
import eti.bi.alphaminer.core.handler.ICaseHandler;
import eti.bi.alphaminer.operation.operator.INodeInfo;
import eti.bi.alphaminer.operation.operator.Operator;
import eti.bi.common.Locale.Resource;
import eti.bi.alphaminer.vo.BIData;
import eti.bi.alphaminer.vo.BIModel;
import eti.bi.alphaminer.vo.BIObject;
import eti.bi.alphaminer.vo.IBIData;
import eti.bi.alphaminer.vo.IBIModel;
public class SMOOperator extends ModelOperator {
/* Parameter name for MiningSettingSpecification and MiningAlgorithm */
public static final String ALGORITHM_NAME = "SMO (Weka)";
private static String MAP_WEKA_CLASS_PARAMETERS = "wekaClassParameters";
/* Parameter name for SMO Operator in BIML */
public static String BUILD_LOG_MODELS = "bulid logistic models";
public static String C = "C";
public static String CACHE_SIZE = "cache size";
public static String DEBUG = "debug";
public static String EPSILON = "epsilon";
public static String EXPONENT = "exponent";
public static String FEATRUE_SPACE_NORMOLIZATION = "feature space normolization";
public static String FILTER_TYPE = "filter type";
public static String GAMMA = "gamma";
public static String LOWER_ORDER_TERMS = "lower order Terms";
public static String NUM_FOLDERS = "num of floders";
public static String RANDOM_SEED = "random seed";
public static String TOLERANCE_PARAMETER = "tolerance parameter";
public static String USE_RBF = "use RBF";
/* Default parameter value for SMO Operator */
public static String DEFAULT_BUILD_LOG_MODELS = "";
public static String DEFAULT_C = String.valueOf(1.0);
public static String DEFAULT_CACHE_SIZE = String.valueOf(250007);
public static String DEFAULT_DEBUG = "";
public static String DEFAULT_EPSILON = String.valueOf(0.000000000001);
public static String DEFAULT_EXPONENT = String.valueOf(1.0);
public static String DEFAULT_FEATRUE_SPACE_NORMOLIZATION = "";
public static String DEFAULT_FILTER_TYPE = "0";
public static String DEFAULT_GAMMA = String.valueOf(0.01);
public static String DEFAULT_LOWER_ORDER_TERMS = "";
public static String DEFAULT_NUM_FOLDERS = String.valueOf(-1);
public static String DEFAULT_RANDOM_SEED = String.valueOf(1);
public static String DEFAULT_TOLERANCE_PARAMETER = String.valueOf(0.001);
public static String DEFAULT_USE_RBF = "";
/* Parameter name for MiningSettingSpecification and MiningAlgorithm */
public SMOOperator(String a_CaseID, INodeInfo aNodeInfo,
ICaseHandler aCaseHandler) {
super(a_CaseID, aNodeInfo, aCaseHandler);
m_DefaultModelName = "SMO model";
//2006/07/29 Xiaojun Chen
PredictionAssessmentOperator.registerParentsDefinitionID(aNodeInfo.getDefinitionID());
ScoreOperator.registerParentsDefinitionID(aNodeInfo.getDefinitionID());
}
private static final long serialVersionUID = 1456485384848913438L;
@Override
public void setNodeID(String a_NodeID) {
setLabel(getDescription() + " [" + a_NodeID + "]");
setDefaultModelName(Resource.srcStr("SMO")+"_" + a_NodeID);
super.setNodeID(a_NodeID);
}
public void setDescription(String a_Description) {
m_Description = a_Description;
setLabel(m_Description + " [" + m_NodeID + "]");
setDefaultModelName(Resource.srcStr("SMO")+"_" + m_NodeID);
}
@SuppressWarnings("unchecked")
public void execute(IOperatorNode a_OperatorNode, Vector a_Parents)
throws SysException, AppException, MiningException {
/* Get parameter from user input */
String buildLogModels = (String) a_OperatorNode
.getParameterValue(BUILD_LOG_MODELS);
if (buildLogModels == null) {
buildLogModels = DEFAULT_BUILD_LOG_MODELS;
}
String c = (String) a_OperatorNode.getParameterValue(C);
if (c == null) {
c = DEFAULT_C;
}
String cacheSize = (String) a_OperatorNode.getParameterValue(CACHE_SIZE);
if (cacheSize == null) {
cacheSize = DEFAULT_CACHE_SIZE;
}
String debug = (String) a_OperatorNode.getParameterValue(DEBUG);
if (debug == null) {
debug = DEFAULT_DEBUG;
}
String epsilon = (String) a_OperatorNode.getParameterValue(EPSILON);
if (epsilon == null) {
epsilon = DEFAULT_EPSILON;
}
String exponent = (String) a_OperatorNode.getParameterValue(EXPONENT);
if (exponent == null) {
exponent = DEFAULT_EXPONENT;
}
String featureSpaceNormolization = (String) a_OperatorNode
.getParameterValue(FEATRUE_SPACE_NORMOLIZATION);
if (featureSpaceNormolization == null) {
featureSpaceNormolization = DEFAULT_FEATRUE_SPACE_NORMOLIZATION;
}
String filterType = (String) a_OperatorNode.getParameterValue(FILTER_TYPE);
if (filterType == null) {
filterType = DEFAULT_FILTER_TYPE;
}
String gamma = (String) a_OperatorNode.getParameterValue(GAMMA);
if (gamma == null) {
gamma = DEFAULT_GAMMA;
}
String lowerOrderTerms = (String) a_OperatorNode
.getParameterValue(LOWER_ORDER_TERMS);
if (lowerOrderTerms == null) {
lowerOrderTerms = DEFAULT_LOWER_ORDER_TERMS;
}
String numFolders = (String) a_OperatorNode.getParameterValue(NUM_FOLDERS);
if (numFolders == null) {
numFolders = DEFAULT_NUM_FOLDERS;
}
String randomSeed = (String) a_OperatorNode.getParameterValue(RANDOM_SEED);
if (randomSeed == null) {
randomSeed = DEFAULT_RANDOM_SEED;
}
String toleranceParameter = (String) a_OperatorNode
.getParameterValue(TOLERANCE_PARAMETER);
if (toleranceParameter == null) {
toleranceParameter = DEFAULT_TOLERANCE_PARAMETER;
}
String useRBF = (String) a_OperatorNode.getParameterValue(USE_RBF);
if (useRBF == null) {
useRBF = DEFAULT_USE_RBF;
}
String smoParameters = buildLogModels+ lowerOrderTerms+ useRBF+featureSpaceNormolization+" -C " + c + " -A "
+ cacheSize+ " -P " + epsilon + " -E "
+ exponent + " -N "
+ filterType + " -G " + gamma
+ " -V " + numFolders + " -W " + randomSeed + " -T "
+ toleranceParameter;
/* Get input bi object from parent node */
Operator parentOp = (Operator) a_Parents.elementAt(0);
setInputBIObject(parentOp.getOutputBIObject());
IBIData aInputBIData = getInputBIObject().getBIData();
aInputBIData.getMiningStoredData().reset();
if (!aInputBIData.hasResult()) {
throw new SysException("No data inputed.");
}
/* Prepare output data model */
BIData aOutputBIData = new BIData(getCaseID(), getNodeID());
aOutputBIData.setTargetAttribute(aInputBIData.getTargetAttribute());
aOutputBIData.setTransformActionHistory(aInputBIData
.getTransformActionHistory());
aOutputBIData.setTargetAttribute(aInputBIData.getTargetAttribute());
aOutputBIData.setMiningStoredData(aInputBIData.getMiningStoredData());
BIModel aOutputBIModel = new BIModel(getCaseID(), getNodeID(),
IBIModel.TYPE_CLASSIFIER);
/* Check attributes */
MiningAttribute targetAttribute = aInputBIData.getTargetAttribute();
aOutputBIModel.setTargetAttribute(targetAttribute);
if (targetAttribute == null) {
m_SystemMessageHandler
.appendMessage(
"Categorical Target attribute is missing. Please add target attribute by using Data Set Attribute Node.");
throw new AppException(
"Categorical Target attribute is missing. Please add target attribute by using Data Set Attribute Node.");
} else if (targetAttribute instanceof NumericAttribute) {
m_SystemMessageHandler.appendMessage( "Attribute \""
+ targetAttribute.getName() + "\" is not Categorical.");
throw new AppException("Attribute \"" + targetAttribute.getName()
+ "\" should be Categorical.");
}
/* Create MiningSettings object and assign metadata */
SupervisedMiningSettings miningSettings = new SupervisedMiningSettings();
miningSettings.setDataSpecification(aInputBIData.getMetaData());
/* Assign settings */
miningSettings.setTarget(targetAttribute);
try {
miningSettings.verifySettings();
} catch (Exception e) {
m_SystemMessageHandler.appendMessage(
"Invalid parameters in building smo model.");
throw new AppException(
"Invalid parameters in building the smo model.");
}
/* Set MiningSettings */
aOutputBIModel.setMiningSettings(miningSettings);
/* Get default mining algorithm specification from 'algorithms.xml' */
MiningAlgorithmSpecification miningAlgorithmSpecification = MiningAlgorithmSpecification
.getMiningAlgorithmSpecification(ALGORITHM_NAME, getNodeInfo());
if (miningAlgorithmSpecification == null)
throw new MiningException("Can't find smo classification method.");
/* Get class name from algorithms specification */
String className = miningAlgorithmSpecification.getClassname();
if (className == null)
throw new MiningException("className attribute expected.");
/* Set MiningAlgorithmSpecification */
miningAlgorithmSpecification.setMAPValue(MAP_WEKA_CLASS_PARAMETERS,
smoParameters);//
aOutputBIModel.setMiningAlgorithmSpecification(miningAlgorithmSpecification);
displayMiningAlgSpecParameters(miningAlgorithmSpecification);
/* Set and display mining parameters */
GeneralUtils
.displayMiningAlgSpecParameters(miningAlgorithmSpecification);
/* Create algorithm object with default values */
MiningAlgorithm algorithm = GeneralUtils
.createMiningAlgorithmInstance(className, this.getClass().getClassLoader());
algorithm.setMiningInputStream(aInputBIData.getMiningStoredData());
algorithm.setMiningSettings(miningSettings);
algorithm.setMiningAlgorithmSpecification(miningAlgorithmSpecification);
try {
algorithm.verify();
} catch (IllegalArgumentException e) {
throw new MiningException(e.getMessage());
}
MiningModel model = algorithm.buildModel();
m_SystemMessageHandler.appendMessage( Resource
.srcStr("calculationtime")
+ " [s]: "
+ algorithm.getTimeSpentToBuildModel()
+ Resource.srcStr("ms"));
m_SystemMessageHandler.nextLine();
aOutputBIModel.setMiningModel(model);
aOutputBIModel.setModelName(m_DefaultModelName);
m_OutputBIObject.setBIData(aOutputBIData);
m_OutputBIObject.setBIModel(aOutputBIModel);
//a_OperatorNode.setParameterValue("Temporary model", aOutputBIModel.getTempBIModelPath());
//aOutputBIModel.writeTempBIModel();
}
/**
* Test if the SMO Operator contains any results.
*
* @return true if SMO Operator has result; false otherwise.
*/
/*
* public boolean hasResult() throws SysException { // TODO Auto-generated
* method stub return false; }
*/
public boolean hasResult() throws SysException {
if (m_OutputBIObject != null) {
return (m_OutputBIObject.hasResult(BIObject.DATA) && m_OutputBIObject
.hasResult(BIObject.MODEL));
} else {
return false;
}
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -