📄 decisiongentreeoperator.java
字号:
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
*
* $Author$
* $Date$
* $Revision$
*
*/
package eti.bi.alphaminer.patch.standard.operation.operator;
import java.util.Vector;
import com.prudsys.pdm.Core.MiningAlgorithmSpecification;
import com.prudsys.pdm.Core.MiningAttribute;
import com.prudsys.pdm.Core.MiningException;
import com.prudsys.pdm.Core.MiningModel;
import com.prudsys.pdm.Models.Classification.DecisionTree.DecisionTreeAlgorithm;
import com.prudsys.pdm.Models.Classification.DecisionTree.DecisionTreeMiningModel;
import com.prudsys.pdm.Models.Classification.DecisionTree.DecisionTreeSettings;
import com.prudsys.pdm.Models.Classification.DecisionTree.Algorithms.GenTree.GenTreeAlgorithm;
import com.prudsys.pdm.Utils.GeneralUtils;
import eti.bi.alphaminer.core.handler.ICaseHandler;
import eti.bi.alphaminer.operation.operator.INodeInfo;
import eti.bi.alphaminer.operation.operator.ModelOperator;
import eti.bi.alphaminer.operation.operator.Operator;
import eti.bi.alphaminer.vo.BIData;
import eti.bi.alphaminer.vo.BIModel;
import eti.bi.alphaminer.vo.BIObject;
import eti.bi.alphaminer.vo.IBIData;
import eti.bi.alphaminer.vo.IBIModel;
import eti.bi.alphaminer.vo.IOperatorNode;
import eti.bi.common.Locale.Resource;
import eti.bi.exception.SysException;
/**
* DecisionTreeOperator is a kind of Operator
*/
public class DecisionGenTreeOperator extends ModelOperator {
/**
*
*/
private static final long serialVersionUID = 1L;
/**
* @param a_CaseID
* @param a_CaseWindow
* @param aOperatorInfo
*/
public DecisionGenTreeOperator(String a_CaseID, INodeInfo aNodeInfo, ICaseHandler aCaseHandler) {
super(a_CaseID, aNodeInfo, aCaseHandler);
// TODO Auto-generated constructor stub
}
private Vector m_Predicted;
public boolean hasResult()
{
if (m_OutputBIObject != null)
{
return (m_OutputBIObject.hasResult(BIObject.DATA) &&
m_OutputBIObject.hasResult(BIObject.MODEL));
}else
{
return false;
}
}
/*
public MiningDataSpecification getApplyMetaData() {
return m_ApplyMetaData;
}
public void setApplyMiningStoredData(MiningStoredData data)
throws MiningException
{
// Transform the input data before apply
MiningStoredData transformedData = null;
if (m_TransformAction!=null)
{
File tempFile = new File(m_TempFileLocation+"/case_"+getCaseID()+"/tmp_"+getNodeID()+m_TempFileExtension);
try
{
transformedData = m_TransformAction.transform(data,tempFile);
m_ApplyMiningStoredData = transformedData;
} catch (Exception e)
{
m_ApplyMiningStoredData = data;
}
}else
{
m_ApplyMiningStoredData = data;
}
if (m_ApplyMiningStoredData!=null)
{
m_ApplyMetaData = m_ApplyMiningStoredData.getMetaData();
m_ApplyMiningStoredData.reset();
}
}
public MiningStoredData getApplyMiningStoredData() {
return m_ApplyMiningStoredData;
}
*/ public Vector getPredicted() {
return m_Predicted;
}
public void clearPredicted()
{
m_Predicted = null;
}
@SuppressWarnings("unchecked")
public void addPredicted(String predict) {
if (m_Predicted==null)
m_Predicted = new Vector();
if (predict==null)
predict = "";
m_Predicted.addElement(predict);
}
/*
public boolean hasApplyResult()
{
return m_Predicted!=null;
}
public void clearApplyResult()
{
m_Predicted = null;
m_ApplyMetaData = null;
m_ApplyMiningStoredData = null;
}
*/
public void execute(IOperatorNode a_OperatorNode, Vector a_Parents)
throws MiningException, SysException
{
// SystemMessagePanel systemMessage = (SystemMessagePanel) m_CaseWindow.getSystemMessagePanel();
/* Operator parentOp = null;
for (int i=0; i<a_Parents.size(); i++)
{
parentOp = ((CaseDiagramPanel) m_CaseWindow.getDiagramDrawingPanel()).getOperatorNode((String) a_Parents.elementAt(i));
if (parentOp instanceof DataSetAttributesOperator)
break;
else
parentOp = null;
}
*//*
if (parentOp==null)
{
throw new MiningException("Invalid parent operator node - Decision tree node must follows a Set Attributes node");
}
else
{
setTransformAction(parentOp.getTransformAction());
setInputMiningStoredData(parentOp.getMiningStoredData());
setTargetAttribute(((DataSetAttributesOperator)parentOp).getTargetAttribute());
}*/
/* Get parameter from user input */
String sizeValue = (String) a_OperatorNode.getParameterValue("Size");
if (sizeValue==null)
{
sizeValue = "0";
}
String depthValue = (String) a_OperatorNode.getParameterValue("Depth");
if (depthValue==null)
{
depthValue = "100";
}
String impurityValue = (String) a_OperatorNode.getParameterValue("Decrease impurity");
if (impurityValue==null)
{
impurityValue = "0.1";
}
String measureValue = (String) a_OperatorNode.getParameterValue("Impurity measure");
if (measureValue==null)
{
measureValue = String.valueOf(GenTreeAlgorithm.FS_GainRatio);
}
/* Get input mining object from parent node */
Operator parentOp = (Operator)a_Parents.elementAt(0);
setInputBIObject(parentOp.getOutputBIObject());
IBIData aInputBIData = getInputBIObject().getBIData();
aInputBIData.getMiningStoredData().reset();
/* Prepare output data model */
BIData aOutputBIData = new BIData(getCaseID(), getNodeID());
aOutputBIData.setTargetAttribute(aInputBIData.getTargetAttribute());
aOutputBIData.setTransformActionHistory(aInputBIData.getTransformActionHistory());
aOutputBIData.setTargetAttribute(aInputBIData.getTargetAttribute());
aOutputBIData.setMiningStoredData(aInputBIData.getMiningStoredData());
BIModel aOutputBIModel = new BIModel(getCaseID(), getNodeID(), IBIModel.TYPE_CLASSIFIER);
/* Execute model building */
MiningAttribute targetAttribute = aInputBIData.getTargetAttribute();
if (targetAttribute==null)
{
m_SystemMessageHandler.appendMessage("Target attribute is missing. Please add target attribute by using Data Set Attribute Node.");
return;
}
DecisionTreeSettings miningSettings = new DecisionTreeSettings();
miningSettings.setTarget(targetAttribute);
miningSettings.setDataSpecification(aInputBIData.getMetaData());
miningSettings.setMinNodeSize(Integer.parseInt(sizeValue), DecisionTreeSettings.SIZE_UNIT_COUNT);
miningSettings.setMaxDepth(Integer.parseInt(depthValue));
miningSettings.setMinDecreaseInImpurity(Double.parseDouble(impurityValue));
try
{
miningSettings.verifySettings();
} catch(IllegalArgumentException e)
{
m_SystemMessageHandler.appendMessage("Invalid building parameters.");
throw new MiningException(e.getMessage());
}
// Set MiningSettings //
aOutputBIModel.setMiningSettings((DecisionTreeSettings)miningSettings);
MiningAlgorithmSpecification miningAlgorithmSpecification = MiningAlgorithmSpecification.getMiningAlgorithmSpecification("Decision tree (General)",getNodeInfo());
String className = miningAlgorithmSpecification.getClassname();
// Set MiningAlgorithmSpecification //
miningAlgorithmSpecification.setMAPValue("impurityMeasureType", measureValue);
aOutputBIModel.setMiningAlgorithmSpecification(miningAlgorithmSpecification);
GeneralUtils.displayMiningAlgSpecParameters(miningAlgorithmSpecification);
displayMiningAlgSpecParameters(miningAlgorithmSpecification);
DecisionTreeAlgorithm algorithm = (DecisionTreeAlgorithm) GeneralUtils.createMiningAlgorithmInstance(className,this.getClass().getClassLoader());
algorithm.setMiningInputStream(aInputBIData.getMiningStoredData());
algorithm.setMiningSettings(miningSettings);
algorithm.setMiningAlgorithmSpecification(miningAlgorithmSpecification);
algorithm.setStoreScoreDistribution(true);
try
{
algorithm.verify();
} catch(IllegalArgumentException e)
{
throw new MiningException(e.getMessage());
}
MiningModel model = algorithm.buildModel();
m_SystemMessageHandler.appendMessage(Resource.srcStr("calculationtime")+" [s]: " + algorithm.getTimeSpentToBuildModel());
/* set output mining data and model to the output mining object */
// set MiningModel //
aOutputBIModel.setMiningModel((DecisionTreeMiningModel) model);
m_OutputBIObject.setBIData(aOutputBIData);
m_OutputBIObject.setBIModel(aOutputBIModel);
aInputBIData.getMiningStoredData().reset();
/* set run time parameter value to the node object (It needs to be stored in the BIML) */
//a_OperatorNode.setParameterValue("Temporary model", aOutputBIModel.getTempBIModelPath());
//aOutputBIModel.writeTempBIModel();
}
/*
public void apply(OperatorNode a_OperatorNode, Vector a_Parents)
throws MiningException
{
Operator inputOp = (Operator) a_Parents.elementAt(0);
setApplyMiningStoredData(inputOp.getMiningStoredData());
getApplyMiningStoredData().reset();
clearPredicted();
while (getApplyMiningStoredData().next())
{
MiningVector vector = getApplyMiningStoredData().read();
double predicted = getDecisionTreeMiningModel().deployModelFunction(vector);
//double predicted = op.getDecisionTreeMiningModel().applyModelFunction(vector);
Category predTarCat = ((CategoricalAttribute) getDecisionTreeSettings().getTarget()).getCategory(predicted);
addPredicted(predTarCat.toString());
}
}*/
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -