📄 clusteringdataview.java
字号:
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* Created on 2005-1-22
*
*/
package eti.bi.alphaminer.patch.standard.operation.result.view;
import java.awt.BorderLayout;
import java.awt.Color;
import java.awt.Component;
import java.awt.Dimension;
import java.io.File;
import java.util.ArrayList;
import java.util.Vector;
import javax.swing.BorderFactory;
import javax.swing.JFileChooser;
import javax.swing.JOptionPane;
import javax.swing.JScrollPane;
import javax.swing.JTable;
import javax.swing.table.TableColumnModel;
import com.prudsys.pdm.Core.CategoricalAttribute;
import com.prudsys.pdm.Core.MiningAttribute;
import com.prudsys.pdm.Core.MiningDataSpecification;
import com.prudsys.pdm.Core.MiningException;
import com.prudsys.pdm.Core.NumericAttribute;
import com.prudsys.pdm.Input.MiningStoredData;
import com.prudsys.pdm.Input.MiningVector;
import com.prudsys.pdm.Models.Clustering.ClusteringMiningModel;
import eti.bi.alphaminer.operation.result.ResultView;
import eti.bi.alphaminer.operation.result.datamodel.SortingDataGridModel;
import eti.bi.alphaminer.operation.result.export.ExcelExporter;
import eti.bi.alphaminer.operation.result.renderer.DataCellRenderer;
import eti.bi.alphaminer.patch.standard.operation.operator.KMeansOperator;
import eti.bi.alphaminer.vo.IBIData;
import eti.bi.alphaminer.vo.IBIModel;
import eti.bi.alphaminer.vo.IBIObject;
import eti.bi.common.Locale.Resource;
import eti.bi.exception.AppException;
import eti.bi.exception.SysException;
import eti.bi.util.NumberFormatter;
/**
* Take ClusteringOperator as input. Output a JPanel shown all the
* records in the operator's MiningStoredData set. The class name
* and the distance to the class center are also displayed.
*
* @author TWang On Jan 22, 2005.
*
*/
public class ClusteringDataView extends ResultView {
/**
*
*/
private static final long serialVersionUID = 1L;
// JTable that shows the data
private JTable m_DataTable;
private String[] m_DataTableHeader;
private Object[][] m_DataTableContent;
private Class[] m_DataTableType;
// JScrollPane that contains JTable
private JScrollPane m_ScrollPane;
private KMeansOperator m_ClusteringOperator;
private ClusteringMiningModel m_ClusteringModel;
private MiningAttribute[] m_Attributes;
private MiningStoredData m_MiningStoredData;
private MiningDataSpecification m_MetaData;
private Vector m_Predicted;
private Vector m_Distances;
/**
* @param a_ClusteringModel
* @throws SysException
* @throws MiningException
*/
public ClusteringDataView(KMeansOperator a_ClusteringModel) throws SysException, MiningException{
super(Resource.srcStr("DataView"));
m_ViewType = ResultView.TYPE_DATA;
m_ClusteringOperator = a_ClusteringModel;
// The condition actually is also juded
IBIObject aBIObject = m_ClusteringOperator.getOutputBIObject();
if (aBIObject == null || aBIObject.getBIModel() == null
|| aBIObject.getBIData() == null) {
new SysException("The OutputBIObject in the ClusteringOperator is NULL");
}
IBIModel aBIModel = aBIObject.getBIModel();
IBIData aBIData = aBIObject.getBIData();
m_ClusteringModel = (ClusteringMiningModel) aBIModel.getMiningModel();
// Get the predicted class and the distances vectors
m_Predicted = m_ClusteringOperator.getPredicted();
m_Distances = m_ClusteringOperator.getDistances();
m_MetaData = aBIData.getMetaData();
m_MiningStoredData = aBIData.getMiningStoredData();
m_Attributes = m_MetaData.getAttributesArray();
m_ScrollPane = new JScrollPane();
this.setLayout(new BorderLayout());
this.setBorder(BorderFactory.createEmptyBorder(0, 0, 0, 0));
this.add(m_ScrollPane, BorderLayout.CENTER);
createView();
}
/*
* Create the view.
*/
public void createView() throws SysException, MiningException
{
if (m_ClusteringModel == null){
throw new SysException("clustering model is null");
}
if (m_ClusteringModel != null)
{
createDataTable(m_ScrollPane);
m_ScrollPane.setPreferredSize(new Dimension(200, 73));
m_ScrollPane.getViewport().add(m_DataTable);
m_ScrollPane.getViewport().setBackground(Color.WHITE);
}
}
/**
*
* Create the JTable and attach it in the ScrollPane.
*
* @param a_ScrollPane
*/
@SuppressWarnings("unchecked")
private void createDataTable(JScrollPane a_ScrollPane) {
// Three columns more to display index, class, and distance information.
int column = m_Attributes.length + 3;
m_DataTableType = new Class[column];
m_DataTableHeader = new String[column];
MiningAttribute attribute = null;
// Create JTable header and JTable class type.
for (int coloumIndex = 0; coloumIndex < column; coloumIndex++) {
if (coloumIndex == 0){
m_DataTableType[coloumIndex] = Integer.class;
m_DataTableHeader[coloumIndex] = Resource.srcStr("CLUSTER_INDEX");
continue;
}
if (coloumIndex == column - 1) {
m_DataTableType[coloumIndex] = Double.class;
m_DataTableHeader[coloumIndex] = Resource.srcStr("CLUSTER_DISTANCE");
continue;
}
if (coloumIndex == column - 2) {
m_DataTableType[coloumIndex] = String.class;
m_DataTableHeader[coloumIndex] = Resource.srcStr("CLUSTER_TITLE");
continue;
}
attribute = m_Attributes[coloumIndex-1];
m_DataTableHeader[coloumIndex] = attribute.getName();
m_DataTableType[coloumIndex] = String.class;
if (attribute instanceof NumericAttribute) {
int dataType = ((NumericAttribute) attribute).getDataType();
if (dataType == NumericAttribute.DOUBLE)
m_DataTableType[coloumIndex] = Double.class;
else if (dataType == NumericAttribute.FLOAT)
m_DataTableType[coloumIndex] = Float.class;
else if (dataType == NumericAttribute.INTEGER)
m_DataTableType[coloumIndex] = Integer.class;
else if (dataType == NumericAttribute.BOOLEAN)
m_DataTableType[coloumIndex] = Boolean.class;
}
else if (attribute instanceof CategoricalAttribute) {
int dataType = ((CategoricalAttribute) attribute).getDataType();
if (dataType == CategoricalAttribute.BOOLEAN)
m_DataTableType[coloumIndex] = Boolean.class;
else
m_DataTableType[coloumIndex] = String.class;
}
}
// Fill the JTable content.
if (m_MiningStoredData != null) {
ArrayList list = m_MiningStoredData.getMiningVectors();
Object[][] content = new Object[list.size()][column];
Vector<Comparable> allVec = null;
MiningVector vec = null;
for (int i = 0; i < list.size(); i++) {
vec = (MiningVector) list.get(i);
allVec = vec.toVector();
allVec.insertElementAt(new Integer(i+1), 0);
allVec.addElement(m_Predicted.elementAt(i).toString());
allVec.addElement( new Double( weka.core.Utils.roundDouble(((Double)m_Distances.elementAt(i)).doubleValue(), NumberFormatter.MAX_FRACTION_DIGIT) ) );
content[i] =allVec.toArray();
}
m_DataTableContent = content;
}
// Create Table
m_DataTable = new JTable();
//m_DataTable.setModel(new DataGridModel(m_DataTableContent, m_DataTableHeader, m_DataTableType));
SortingDataGridModel model = new SortingDataGridModel(m_DataTableContent, m_DataTableHeader, m_DataTableType);
m_DataTable.setModel(model);
m_DataTable.setDefaultRenderer(String.class, new DataCellRenderer(true));
m_DataTable.setDefaultRenderer(Short.class, new DataCellRenderer(true));
m_DataTable.setDefaultRenderer(Long.class, new DataCellRenderer(true));
m_DataTable.setDefaultRenderer(Integer.class, new DataCellRenderer(true));
m_DataTable.setDefaultRenderer(Double.class, new DataCellRenderer(true));
m_DataTable.setDefaultRenderer(Float.class, new DataCellRenderer(true));
model.addMouseListenerToHeader(m_DataTable);
setColumnWidth();
}
public void setColumnWidth() {
TableColumnModel tcm = m_DataTable.getColumnModel();
for (int i=1; i<tcm.getColumnCount(); i++)
tcm.getColumn(i).setMinWidth(60);
m_DataTable.setAutoResizeMode(JTable.AUTO_RESIZE_OFF);
tcm.getColumn(0).setPreferredWidth(60);
tcm.getColumn(0).setCellRenderer(m_DataTable.getTableHeader().getDefaultRenderer());
}
/**
* Exort the data table into an excel file.
*
* Called by the OperatorResult class. The subclass of OperatorResult must
* call m_SelectedView.export() explictly if it overwirte the export() function
* of OperatorResult.
*/
public void export() throws AppException, SysException {
// Use user home directory
File directory = new File(System.getProperty("user.dir"));
// Create and initialize file chooser for excel
JFileChooser chooser = new JFileChooser(directory);
chooser.setDialogTitle(Resource.srcStr("FileExport"));
chooser.setFileFilter(ExcelExporter.FILTER);
chooser.setSelectedFile(ExcelExporter.DEFAULT_FILE);
// pop up the file chooser dialog and return the file value
int returnVal = chooser.showSaveDialog(this);
if (returnVal == JFileChooser.APPROVE_OPTION)
{
File exportFile = chooser.getSelectedFile();
//<<tyleung 20/4/2005
if (exportFile.exists()) {
int option = JOptionPane
.showConfirmDialog(
(Component) this,
"The file \""
+ exportFile.getName()
+ "\""
+ " already exists. Do you want to replace the existing file?",//
"AlphaMiner", JOptionPane.YES_NO_OPTION,
JOptionPane.QUESTION_MESSAGE);
if (option != JOptionPane.CANCEL_OPTION) {
if (option == JOptionPane.YES_OPTION) {
// Create the excel exporter with the excel file extension enforced to be .xls
ExcelExporter aExporter = new ExcelExporter(m_DataTable, exportFile, true);
//ExcelExporter aExporter = new ExcelExporter(m_MiningStoredData, exportFile, true);
aExporter.export();
}else{
returnVal = chooser.showSaveDialog(this);
}
}
}else{
// Create the excel exporter with the excel file extension enforced to be .xls
ExcelExporter aExporter = new ExcelExporter(m_DataTable, exportFile, true);
//ExcelExporter aExporter = new ExcelExporter(m_MiningStoredData, exportFile, true);
aExporter.export();
}
}
//tyleung 20/4/2005>>
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -