⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 logisticdataview.java

📁 一个数据挖掘软件ALPHAMINERR的整个过程的JAVA版源代码
💻 JAVA
字号:
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */
/*
 * Created on 2005-1-25
 
 */
package eti.bi.alphaminer.patch.standard.operation.result.view;
import java.awt.BorderLayout;
import java.awt.Color;
import java.awt.Component;
import java.awt.Dimension;
import java.io.File;
import java.util.ArrayList;
import java.util.Vector;
import javax.swing.BorderFactory;
import javax.swing.JFileChooser;
import javax.swing.JOptionPane;
import javax.swing.JScrollPane;
import javax.swing.JTable;
import javax.swing.table.TableColumnModel;
import weka.classifiers.functions.Logistic;
import weka.core.Instances;
import com.prudsys.pdm.Adapters.Weka.WekaClassifier;
import com.prudsys.pdm.Adapters.Weka.WekaCoreAdapter;
import com.prudsys.pdm.Adapters.Weka.WekaSupervisedMiningModel;
import com.prudsys.pdm.Core.CategoricalAttribute;
import com.prudsys.pdm.Core.MiningAttribute;
import com.prudsys.pdm.Core.MiningDataSpecification;
import com.prudsys.pdm.Core.MiningException;
import com.prudsys.pdm.Core.NumericAttribute;
import com.prudsys.pdm.Input.MiningStoredData;
import com.prudsys.pdm.Input.MiningVector;
import eti.bi.alphaminer.operation.result.ResultView;
import eti.bi.alphaminer.operation.result.datamodel.SortingDataGridModel;
import eti.bi.alphaminer.operation.result.export.ExcelExporter;
import eti.bi.alphaminer.operation.result.renderer.DataCellRenderer;
import eti.bi.alphaminer.patch.standard.operation.operator.RegressionOperator;
import eti.bi.alphaminer.vo.IBIData;
import eti.bi.alphaminer.vo.IBIModel;
import eti.bi.alphaminer.vo.IBIObject;
import eti.bi.common.Locale.Resource;
import eti.bi.exception.AppException;
import eti.bi.exception.SysException;
import eti.bi.util.NumberFormatter;

/**
 * * Take RegressionOperator as input. Output a JPanel shown all the records in
 * the operator's MiningStoredData set. The posterior distribution probability
 * is also shown. The Residual Value can be added later if necessary.
 * 
 * @author TWang On Jan 25, 2005.
 * 
 */
public class LogisticDataView extends ResultView {
	/**
	 * 
	 */
	private static final long serialVersionUID = 1L;
	// JTable that shows the data
	private JTable m_DataTable;
	private String[] m_DataTableHeader;
	private Object[][] m_DataTableContent;
	private Class[] m_DataTableType;
	// JScrollPane that contains JTable
	private JScrollPane m_ScrollPane;
	// Weka and Xelopse data structures
	private RegressionOperator m_ClusteringOperator;
	private weka.classifiers.Classifier m_WekaClassifier;
	private MiningAttribute[] m_Attributes;
	private MiningStoredData m_MiningStoredData;
	private MiningDataSpecification m_MetaData;
	private MiningAttribute m_TargetMiningAttribute;
	/**
	 * @param a_ClusteringModel
	 * @throws Exception
	 */
	public LogisticDataView(RegressionOperator a_RegressionOperator, MiningAttribute[] a_MingAttributes)
			throws Exception {
		super(Resource.srcStr("DataView"));
		m_ViewType = ResultView.TYPE_DATA;
		m_ClusteringOperator = a_RegressionOperator;
		m_Attributes = a_MingAttributes;
		// The condition actually is also judged in the Operator
		IBIObject aBIObject = m_ClusteringOperator.getOutputBIObject();
		if (aBIObject == null || aBIObject.getBIModel() == null || aBIObject.getBIData() == null) {
			throw new SysException("The OutputBIObject in the ClusteringOperator is NULL");
		}
		IBIModel aBIModel = aBIObject.getBIModel();
		IBIData aBIData = aBIObject.getBIData();
		// Get the weka classifier
		WekaSupervisedMiningModel supervisedMiningModel = (WekaSupervisedMiningModel) aBIModel.getMiningModel();
		WekaClassifier wekaClassifier = (WekaClassifier) supervisedMiningModel.getClassifier();
		m_WekaClassifier = (weka.classifiers.Classifier) wekaClassifier.getWekaClassifier();
		if (!(m_WekaClassifier instanceof Logistic)) {
			throw new SysException("The Classifier is not an instance of weka.classifiers.functions.Logistic");
		}
		// Get the MiningStoredData and MetaData
		m_MiningStoredData = aBIData.getMiningStoredData();
		m_MetaData = aBIData.getMetaData();
		// Get the target MiningAttribute
		m_TargetMiningAttribute = m_MetaData.getMiningAttribute(supervisedMiningModel.getTarget().getName());
		m_ScrollPane = new JScrollPane();
		this.setLayout(new BorderLayout());
		this.setBorder(BorderFactory.createEmptyBorder(0, 0, 0, 0));
		this.add(m_ScrollPane, BorderLayout.CENTER);
		createView();
	}

	/*
	 * Create the view.
	 */
	public void createView() throws Exception {
		if (m_WekaClassifier == null) {
			throw new SysException("The Weka Classifier is NULL.");
		} else {
			createDataTable(m_ScrollPane);
			m_ScrollPane.setPreferredSize(new Dimension(200, 73));
			m_ScrollPane.getViewport().add(m_DataTable);
			m_ScrollPane.getViewport().setBackground(Color.WHITE);
		}
	}

	/**
	 * Helper calss to transform Xelopes MingStoredData into WEKA Instances.
	 * 
	 * @param a_InputMiningStoredData
	 * @return
	 * @throws MiningException
	 */
	public Instances transform(MiningStoredData a_InputMiningStoredData) throws MiningException {
		Instances wekaInstances;
		try {
			// Reset the cursor of the MiningStoredData set, so the transform
			// starts from
			// the first reord. Otherwise, the returned object might be NULL.
			// By TWang. Jan 25, 2005.
			a_InputMiningStoredData.reset();
			wekaInstances = (Instances) WekaCoreAdapter.PDMMiningInputStream2WekaInstances(a_InputMiningStoredData);
		} catch (Exception e) {
			e.printStackTrace();
			throw new MiningException("Can not transform from MiningStoredData to Instances.");
		}
		return wekaInstances;
	}

	/**
	 * 
	 * Create the JTable and attach it in the ScrollPane.
	 * 
	 * @param a_ScrollPane
	 * @throws Exception
	 */
	@SuppressWarnings("unchecked")
	private void createDataTable(JScrollPane a_ScrollPane) throws Exception {
		// Two columns more to display index, and post probability.
		// The Residual Value may be added later.
		int column = m_Attributes.length + 2;
		m_DataTableType = new Class[column];
		m_DataTableHeader = new String[column];
		MiningAttribute attribute = null;
		// Create JTable header and JTable class type.
		for (int coloumIndex = 0; coloumIndex < column; coloumIndex++) {
			if (coloumIndex == 0) {
				m_DataTableType[coloumIndex] = Integer.class;
				m_DataTableHeader[coloumIndex] = Resource.srcStr("REGRESSION_INDEX");
				continue;
			}
			if (coloumIndex == column - 1) {
				m_DataTableType[coloumIndex] = String.class;
				m_DataTableHeader[coloumIndex] = Resource.srcStr("REGRESSION_POST");
				continue;
			}
			attribute = m_Attributes[coloumIndex - 1];
			m_DataTableHeader[coloumIndex] = attribute.getName();
			m_DataTableType[coloumIndex] = String.class;
			if (attribute instanceof NumericAttribute) {
				int dataType = ((NumericAttribute) attribute).getDataType();
				if (dataType == NumericAttribute.DOUBLE)
					m_DataTableType[coloumIndex] = Double.class;
				else if (dataType == NumericAttribute.FLOAT)
					m_DataTableType[coloumIndex] = Float.class;
				else if (dataType == NumericAttribute.INTEGER)
					m_DataTableType[coloumIndex] = Integer.class;
				else if (dataType == NumericAttribute.BOOLEAN)
					m_DataTableType[coloumIndex] = Boolean.class;
			} else if (attribute instanceof CategoricalAttribute) {
				int dataType = ((CategoricalAttribute) attribute).getDataType();
				if (dataType == CategoricalAttribute.BOOLEAN)
					m_DataTableType[coloumIndex] = Boolean.class;
				else
					m_DataTableType[coloumIndex] = String.class;
			}
		}
		// Fill the JTable content.
		if (m_MiningStoredData != null) {
			ArrayList list = m_MiningStoredData.getMiningVectors();
			Instances instances = transform(m_MiningStoredData);
			Object[][] content = new Object[list.size()][column];
			Vector<Comparable> allVec = null;
			MiningVector vec = null;
			for (int i = 0; i < list.size(); i++) {
				vec = (MiningVector) list.get(i);
				allVec = vec.toVector();
				double[] m_PosProb = m_WekaClassifier.distributionForInstance(instances.instance(i));
				ArrayList values = ((CategoricalAttribute) m_TargetMiningAttribute).getValues();
				String posProb = "";
				for (int j = 0; j < m_PosProb.length; j++) {
					posProb = posProb.concat(weka.core.Utils.roundDouble(m_PosProb[j],
							NumberFormatter.MAX_FRACTION_DIGIT)
							+ " --> (" + values.get(j).toString() + ");  ");
				}
				// Insert the index column
				allVec.insertElementAt(new Integer(i + 1), 0);
				// Add the probability column
				allVec.addElement(posProb);
				content[i] = allVec.toArray();
			}
			m_DataTableContent = content;
		}
		// Create Table
		m_DataTable = new JTable();
		// m_DataTable.setModel(new DataGridModel(m_DataTableContent,
		// m_DataTableHeader, m_DataTableType));
		SortingDataGridModel model = new SortingDataGridModel(m_DataTableContent, m_DataTableHeader, m_DataTableType);
		m_DataTable.setModel(model);
		m_DataTable.setDefaultRenderer(String.class, new DataCellRenderer(true));
		m_DataTable.setDefaultRenderer(Short.class, new DataCellRenderer(true));
		m_DataTable.setDefaultRenderer(Long.class, new DataCellRenderer(true));
		m_DataTable.setDefaultRenderer(Integer.class, new DataCellRenderer(true));
		m_DataTable.setDefaultRenderer(Double.class, new DataCellRenderer(true));
		m_DataTable.setDefaultRenderer(Float.class, new DataCellRenderer(true));
		model.addMouseListenerToHeader(m_DataTable);
		setColumnWidth();
	}

	public void setColumnWidth() {
		TableColumnModel tcm = m_DataTable.getColumnModel();
		int count = tcm.getColumnCount();
		for (int i = 1; i < count; i++) {
			tcm.getColumn(i).setPreferredWidth(80);
		}
		m_DataTable.setAutoResizeMode(JTable.AUTO_RESIZE_OFF);
		// Make the last column large enough
		tcm.getColumn(tcm.getColumnCount() - 1).setMinWidth(400);
		tcm.getColumn(0).setCellRenderer(m_DataTable.getTableHeader().getDefaultRenderer());
	}

	/**
	 * Exort the data table into an excel file.
	 * 
	 * Called by the OperatorResult class. The subclass of OperatorResult must
	 * call m_SelectedView.export() explictly if it overwirtes the export()
	 * function of OperatorResult.
	 */
	public void export() throws AppException, SysException {
		// Use user home directory
		File directory = new File(System.getProperty("user.dir"));
		// Create and initialize file chooser for excel
		JFileChooser chooser = new JFileChooser(directory);
		chooser.setDialogTitle(Resource.srcStr("FileExport"));
		chooser.setFileFilter(ExcelExporter.FILTER);
		chooser.setSelectedFile(ExcelExporter.DEFAULT_FILE);
		// pop up the file chooser dialog and return the file value
		int returnVal = chooser.showSaveDialog(this);
		if (returnVal == JFileChooser.APPROVE_OPTION) {
			File exportFile = chooser.getSelectedFile();
			// <<tyleung 20/4/2005
			if (exportFile.exists()) {
				int option = JOptionPane.showConfirmDialog((Component) this, "The file  \"" + exportFile.getName()
						+ "\"" + " already exists. Do you want to replace the existing file?",//						
						"AlphaMiner", JOptionPane.YES_NO_OPTION, JOptionPane.QUESTION_MESSAGE);
				if (option != JOptionPane.CANCEL_OPTION) {
					if (option == JOptionPane.YES_OPTION) {
						// Create the excel exporter with the excel file
						// extension enforced to be .xls
						ExcelExporter aExporter = new ExcelExporter(m_DataTable, exportFile, true);
						// ExcelExporter aExporter = new
						// ExcelExporter(m_MiningStoredData, exportFile, true);
						aExporter.export();
					} else {
						returnVal = chooser.showSaveDialog(this);
					}
				}
			} else {
				// Create the excel exporter with the excel file extension
				// enforced to be .xls
				ExcelExporter aExporter = new ExcelExporter(m_DataTable, exportFile, true);
				// ExcelExporter aExporter = new
				// ExcelExporter(m_MiningStoredData, exportFile, true);
				aExporter.export();
			}
		}
		// tyleung 20/4/2005>>
	}
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -