⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 linearregressiondataview.java

📁 一个数据挖掘软件ALPHAMINERR的整个过程的JAVA版源代码
💻 JAVA
字号:
package eti.bi.alphaminer.patch.standard.operation.result.view;

//@author XiaoguangXu HITSZ-ICE

import java.awt.BorderLayout;
import java.awt.Color;
import java.awt.Component;
import java.awt.Dimension;
import java.io.File;
import java.util.ArrayList;
import java.util.Vector;

import javax.swing.BorderFactory;
import javax.swing.JFileChooser;
import javax.swing.JOptionPane;
import javax.swing.JScrollPane;
import javax.swing.JTable;
import javax.swing.table.TableColumnModel;

import weka.classifiers.functions.LinearRegression;
import weka.core.Instances;

import com.prudsys.pdm.Adapters.Weka.WekaClassifier;
import com.prudsys.pdm.Adapters.Weka.WekaCoreAdapter;
import com.prudsys.pdm.Adapters.Weka.WekaSupervisedMiningModel;
import com.prudsys.pdm.Core.CategoricalAttribute;
import com.prudsys.pdm.Core.MiningAttribute;
import com.prudsys.pdm.Core.MiningDataSpecification;
import com.prudsys.pdm.Core.MiningException;
import com.prudsys.pdm.Core.NumericAttribute;
import com.prudsys.pdm.Input.MiningStoredData;
import com.prudsys.pdm.Input.MiningVector;

import eti.bi.alphaminer.operation.result.ResultView;
import eti.bi.alphaminer.operation.result.datamodel.SortingDataGridModel;
import eti.bi.alphaminer.operation.result.export.ExcelExporter;
import eti.bi.alphaminer.operation.result.renderer.DataCellRenderer;
import eti.bi.alphaminer.patch.standard.operation.operator.LinearRegressionOperator;
import eti.bi.alphaminer.vo.IBIData;
import eti.bi.alphaminer.vo.IBIModel;
import eti.bi.alphaminer.vo.IBIObject;
import eti.bi.exception.AppException;
import eti.bi.exception.SysException;
import eti.bi.common.Locale.Resource;

public class LinearRegressionDataView extends ResultView{

	private static final long serialVersionUID = -6642809357689092609L;
	// JTable that shows the data
	private JTable m_DataTable;
	private String[] m_DataTableHeader;
	private Object[][] m_DataTableContent;
	private Class[] m_DataTableType; 
	
	// JScrollPane that contains JTable
	private JScrollPane m_ScrollPane;
	
	// Weka and Xelopse data structures 
	
	private LinearRegressionOperator m_ClusteringOperator;
	private weka.classifiers.Classifier m_WekaClassifier; 
	private MiningAttribute[] m_Attributes;  
	private MiningStoredData m_MiningStoredData;
	private MiningDataSpecification m_MetaData; 
	private MiningAttribute m_TargetMiningAttribute; 
	//new adding by XiaoguangXU
	private int m_TargetMiningAttributeIndex;
 	
 	/**
	 * @param a_ClusteringModel
	 * @throws Exception
	 */

	public LinearRegressionDataView(LinearRegressionOperator a_LinearRegressionOperator, MiningAttribute[] a_MingAttributes) throws Exception{
		
		super(Resource.srcStr("DataView"));
		m_ViewType = ResultView.TYPE_DATA;
		
		m_ClusteringOperator = a_LinearRegressionOperator; 
		m_Attributes = a_MingAttributes;
		
		// The condition actually is also judged in the Operator
		IBIObject aBIObject = m_ClusteringOperator.getOutputBIObject();
		if (aBIObject == null || aBIObject.getBIModel() == null
				|| aBIObject.getBIData() == null) {
			
			throw new SysException("The OutputBIObject in the ClusteringOperator is NULL");

		}		
		IBIModel aBIModel = aBIObject.getBIModel();
		IBIData aBIData = aBIObject.getBIData();
		
		// Get the weka classifier
		WekaSupervisedMiningModel supervisedMiningModel = (WekaSupervisedMiningModel)aBIModel.getMiningModel();
    	WekaClassifier wekaClassifier = (WekaClassifier) supervisedMiningModel.getClassifier();    	 
    	m_WekaClassifier = (weka.classifiers.Classifier)wekaClassifier.getWekaClassifier();
	 
    	if ( ! (m_WekaClassifier instanceof LinearRegression) ){
    		throw new SysException("The Classifier is not an instance of weka.classifiers.functions.LinearRegression");
    	}  
		
    	// Get the MiningStoredData and MetaData
		m_MiningStoredData = aBIData.getMiningStoredData(); 		
		m_MetaData = aBIData.getMetaData(); 
		
		// Get the target MiningAttribute
		m_TargetMiningAttribute = m_MetaData.getMiningAttribute(supervisedMiningModel.getTarget().getName());
		m_TargetMiningAttributeIndex=m_MetaData.getAttributeIndex(m_TargetMiningAttribute);
		 
		m_ScrollPane = new JScrollPane(); 
		
		this.setLayout(new BorderLayout());
		this.setBorder(BorderFactory.createEmptyBorder(0, 0, 0, 0)); 
		this.add(m_ScrollPane, BorderLayout.CENTER);
 		createView();
 	}
	
	public void createView() throws Exception
	{
		if (m_WekaClassifier == null){
			throw new SysException("The Weka Classifier is NULL.");
		}
		else
		{   
			createDataTable(m_ScrollPane); 
				
			m_ScrollPane.setPreferredSize(new Dimension(200, 73));
			m_ScrollPane.getViewport().add(m_DataTable);
			m_ScrollPane.getViewport().setBackground(Color.WHITE);  
		}
	}
	
	
	/**
	 * Helper calss to transform Xelopes MingStoredData into WEKA Instances.
	 * 
	 * @param a_InputMiningStoredData
	 * @return
	 * @throws MiningException
	 */
	
	public Instances transform(MiningStoredData a_InputMiningStoredData) throws MiningException
	{ 
		Instances wekaInstances;
		try {
			// Reset the cursor of the MiningStoredData set, so the transform starts from
			// the first reord. Otherwise, the returned object might be NULL.
			// By TWang. Jan 25, 2005.
			a_InputMiningStoredData.reset();
			
			wekaInstances = (Instances) WekaCoreAdapter.PDMMiningInputStream2WekaInstances(a_InputMiningStoredData); 
		} catch (Exception e) { 
			e.printStackTrace();
			throw new MiningException("Can not transform from MiningStoredData to Instances.");
		}
		return wekaInstances;
	}

	/**
	 * 
	 * Create the JTable and attach it in the ScrollPane.   
	 *  
	 * @param a_ScrollPane
	 * @throws Exception
	 */
 	
	@SuppressWarnings("unchecked")
	private void createDataTable(JScrollPane a_ScrollPane) throws Exception {
		 
		// Four columns are added, one is to display index, the others are to display the predict, the actual and the error.
		// The Residual Value may be added later.
		int column = m_Attributes.length + 4;
		m_DataTableType = new Class[column];
		m_DataTableHeader = new String[column]; 
		MiningAttribute attribute = null; 
 
		// Create JTable header and JTable class type.
		for (int coloumIndex = 0; coloumIndex < column; coloumIndex++) {
			if (coloumIndex == 0){ 
				m_DataTableType[coloumIndex] = Integer.class;
				m_DataTableHeader[coloumIndex] = Resource.srcStr("LINEARREGRESSION_INDEX");
				continue;  
			}
			if(coloumIndex==column-3)
			{
				m_DataTableType[coloumIndex] = String.class;
				m_DataTableHeader[coloumIndex] = Resource.srcStr("LINEARREGRESSION_ACTUAL");
				continue; 
			}
			if(coloumIndex==column-2)
			{
				m_DataTableType[coloumIndex] = String.class;
				m_DataTableHeader[coloumIndex] = Resource.srcStr("LINEARREGRESSION_PREDICTED");
				continue; 
			}
				
			if (coloumIndex == column - 1) {
				m_DataTableType[coloumIndex] = String.class;
				m_DataTableHeader[coloumIndex] = Resource.srcStr("LINEARREGRESSION_ERROR");
				continue;
			}
			attribute = m_Attributes[coloumIndex-1];
			m_DataTableHeader[coloumIndex] = attribute.getName();
			m_DataTableType[coloumIndex] = String.class; 
		
			
			if (attribute instanceof NumericAttribute) {
				
				int dataType = ((NumericAttribute) attribute).getDataType();
				
				if (dataType == NumericAttribute.DOUBLE)
					m_DataTableType[coloumIndex] = Double.class;
				else if (dataType == NumericAttribute.FLOAT)
					m_DataTableType[coloumIndex] = Float.class;
				else if (dataType == NumericAttribute.INTEGER)
					m_DataTableType[coloumIndex] = Integer.class;
				else if (dataType == NumericAttribute.BOOLEAN)
					m_DataTableType[coloumIndex] = Boolean.class; 
			} 
			else if (attribute instanceof CategoricalAttribute) {
				
				int dataType = ((CategoricalAttribute) attribute).getDataType();

				if (dataType == CategoricalAttribute.BOOLEAN)
					m_DataTableType[coloumIndex] = Boolean.class; 
				else 
					m_DataTableType[coloumIndex] = String.class; 
			}
		}
		 
		// Fill the JTable content.
		if (m_MiningStoredData != null) {
			ArrayList list = m_MiningStoredData.getMiningVectors();
			Instances instances = transform(m_MiningStoredData); 
			
			Object[][] content = new Object[list.size()][column];
			Vector allVec = null; 
			MiningVector vec = null; 
			
			for (int i = 0; i < list.size(); i++) {
				vec = (MiningVector) list.get(i);
			    allVec = vec.toVector();  
				
			    double predicted=m_WekaClassifier.classifyInstance(instances.instance(i));
			    //double actual=m_WekaClassifier.
			   // double m_PosP = m_WekaClassifier.distributionForInstance(instances.instance(i)); 
			    double actual  = (double) vec.getValue(m_TargetMiningAttributeIndex);
			    
			    double error=predicted-actual;
				//String posProb = "";
			    
			    
			    // Insert the index column
			    allVec.insertElementAt(new Integer(i+1), 0); 
			    
			    // Add the probability column
				allVec.addElement(String.valueOf(actual));
				allVec.addElement(String.valueOf(predicted));
				allVec.addElement(String.valueOf(error));
			 	content[i] =allVec.toArray(); 
			}
			m_DataTableContent = content; 
		}

		// Create Table			
		m_DataTable = new JTable();
		//m_DataTable.setModel(new DataGridModel(m_DataTableContent, m_DataTableHeader, m_DataTableType));		
		SortingDataGridModel model = new SortingDataGridModel(m_DataTableContent, m_DataTableHeader, m_DataTableType);
		m_DataTable.setModel(model);
		m_DataTable.setDefaultRenderer(String.class, new DataCellRenderer(true));
		m_DataTable.setDefaultRenderer(Short.class, new DataCellRenderer(true));
		m_DataTable.setDefaultRenderer(Long.class, new DataCellRenderer(true));
		m_DataTable.setDefaultRenderer(Integer.class, new DataCellRenderer(true));
		m_DataTable.setDefaultRenderer(Double.class, new DataCellRenderer(true));
		m_DataTable.setDefaultRenderer(Float.class, new DataCellRenderer(true));
		
		model.addMouseListenerToHeader(m_DataTable); 
		setColumnWidth();
	}
	
	public void setColumnWidth() {
		TableColumnModel tcm = m_DataTable.getColumnModel();
	 
		for (int i=1; i<tcm.getColumnCount(); i++){
				tcm.getColumn(i).setPreferredWidth(80);
		}
		
		m_DataTable.setAutoResizeMode(JTable.AUTO_RESIZE_OFF);			
		
		// Make the last column large enough
		tcm.getColumn(tcm.getColumnCount() - 1).setMinWidth(400);
		tcm.getColumn(0).setCellRenderer(m_DataTable.getTableHeader().getDefaultRenderer()); 
}
	/**
	 * Exort the data table into an excel file.
	 * 
	 * Called by the OperatorResult class. The subclass of OperatorResult must 
	 * call m_SelectedView.export() explictly if it overwirtes the export() function 
	 * of OperatorResult.
	 */
	public void export() throws AppException, SysException {
		// Use user home directory 
		File directory = new File(System.getProperty("user.dir"));

		// Create and initialize file chooser for excel
		JFileChooser chooser = new JFileChooser(directory);
		chooser.setDialogTitle(Resource.srcStr("FileExport"));
		chooser.setFileFilter(ExcelExporter.FILTER);
		chooser.setSelectedFile(ExcelExporter.DEFAULT_FILE);

  		// pop up the file chooser dialog and return the file value
		int returnVal = chooser.showSaveDialog(this);	  
		if (returnVal == JFileChooser.APPROVE_OPTION) 
		{
			File exportFile = chooser.getSelectedFile();
		
			if (exportFile.exists()) {
				int option = JOptionPane
						.showConfirmDialog(
								(Component) this,
								Resource.srcStr("FileMessage")
								+ exportFile.getName()
								+ "\""
								+ Resource.srcStr("ExistsMessage"),//						
						Resource.srcStr("AlphaMiner"), JOptionPane.YES_NO_OPTION,
								JOptionPane.QUESTION_MESSAGE);
				if (option != JOptionPane.CANCEL_OPTION) {
					if (option == JOptionPane.YES_OPTION) {
//					  Create the excel exporter with the excel file extension enforced to be .xls
					  	ExcelExporter aExporter = new ExcelExporter(m_DataTable, exportFile, true);
						//ExcelExporter aExporter = new ExcelExporter(m_MiningStoredData, exportFile, true);
						aExporter.export();
						
					}else{
						returnVal = chooser.showSaveDialog(this);
					}
				}
			}else {

				// Create the excel exporter with the excel file extension enforced to be .xls
			  	ExcelExporter aExporter = new ExcelExporter(m_DataTable, exportFile, true);
				//ExcelExporter aExporter = new ExcelExporter(m_MiningStoredData, exportFile, true);
				aExporter.export();
			}
		}
		//XiaoguangXu 5/6/2006>>
	} 
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -