⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 clusterer.java

📁 一个数据挖掘软件ALPHAMINERR的整个过程的JAVA版源代码
💻 JAVA
字号:
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *    Clusterer.java
 *    Copyright (C) 1999 Mark Hall
 *
 */

package weka.clusterers;

import java.io.Serializable;

import weka.core.Instance;
import weka.core.Instances;
import weka.core.SerializedObject;
import weka.core.Utils;


/** 
 * Abstract clusterer.
 *
 * @author Mark Hall (mhall@cs.waikato.ac.nz)
 * @version $Revision$
 */
public abstract class Clusterer implements Cloneable, Serializable {

  // ===============
  // Public methods.
  // ===============
 
  /**
   * Generates a clusterer. Has to initialize all fields of the clusterer
   * that are not being set via options.
   *
   * @param data set of instances serving as training data 
   * @exception Exception if the clusterer has not been 
   * generated successfully
   */
  public abstract void buildClusterer(Instances data) throws Exception;

  /**
   * Classifies a given instance. Either this or distributionForInstance()
   * needs to be implemented by subclasses.
   *
   * @param instance the instance to be assigned to a cluster
   * @return the number of the assigned cluster as an integer
   * @exception Exception if instance could not be clustered
   * successfully
   */
  public int clusterInstance(Instance instance) throws Exception {

    double [] dist = distributionForInstance(instance);

    if (dist == null) {
      throw new Exception("Null distribution predicted");
    }

    if (Utils.sum(dist) <= 0) {
      throw new Exception("Unable to cluster instance");
    }
    return Utils.maxIndex(dist);
  }

  /**
   * Predicts the cluster memberships for a given instance.  Either
   * this or clusterInstance() needs to be implemented by subclasses.
   *
   * @param instance the instance to be assigned a cluster.
   * @return an array containing the estimated membership 
   * probabilities of the test instance in each cluster (this 
   * should sum to at most 1)
   * @exception Exception if distribution could not be 
   * computed successfully 
   */
  public double[] distributionForInstance(Instance instance) 
    throws Exception {

    double[] d = new double[numberOfClusters()];

    d[clusterInstance(instance)] = 1.0;
    
    return d;
  }

  /**
   * Returns the number of clusters.
   *
   * @return the number of clusters generated for a training dataset.
   * @exception Exception if number of clusters could not be returned
   * successfully
   */
  public abstract int numberOfClusters() throws Exception;

  /**
   * Creates a new instance of a clusterer given it's class name and
   * (optional) arguments to pass to it's setOptions method. If the
   * clusterer implements OptionHandler and the options parameter is
   * non-null, the clusterer will have it's options set.
   *
   * @param searchName the fully qualified class name of the clusterer
   * @param options an array of options suitable for passing to setOptions. May
   * be null.
   * @return the newly created search object, ready for use.
   * @exception Exception if the clusterer class name is invalid, or the 
   * options supplied are not acceptable to the clusterer.
   */
  public static Clusterer forName(String clustererName,
				  String [] options) throws Exception {
    return (Clusterer)Utils.forName(Clusterer.class,
				    clustererName,
				    options);
  }

  /**
   * Creates copies of the current clusterer. Note that this method
   * now uses Serialization to perform a deep copy, so the Clusterer
   * object must be fully Serializable. Any currently built model will
   * now be copied as well.
   *
   * @param model an example clusterer to copy
   * @param num the number of clusterer copies to create.
   * @return an array of clusterers.
   * @exception Exception if an error occurs 
   */
  public static Clusterer [] makeCopies(Clusterer model,
					int num) throws Exception {
     if (model == null) {
      throw new Exception("No model clusterer set");
    }
    Clusterer [] clusterers = new Clusterer [num];
    SerializedObject so = new SerializedObject(model);
    for(int i = 0; i < clusterers.length; i++) {
      clusterers[i] = (Clusterer) so.getObject();
    }
    return clusterers;
  }
}


⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -