📄 apriori.java
字号:
m_allTheRules[0].addElement(sortedRuleSet[0].elementAt(indices[i]));
m_allTheRules[1].addElement(sortedRuleSet[1].elementAt(indices[i]));
m_allTheRules[2].addElement(sortedRuleSet[2].elementAt(indices[i]));
if (m_metricType != CONFIDENCE || m_significanceLevel != -1) {
m_allTheRules[3].addElement(sortedRuleSet[3].elementAt(indices[i]));
m_allTheRules[4].addElement(sortedRuleSet[4].elementAt(indices[i]));
m_allTheRules[5].addElement(sortedRuleSet[5].elementAt(indices[i]));
}
}
if (m_verbose) {
if (m_Ls.size() > 1) {
System.out.println(toString());
}
}
m_minSupport -= m_delta;
/* m_minSupport = (m_minSupport < m_lowerBoundMinSupport)
? 0
: m_minSupport; */
necSupport = (int)(m_minSupport *
(double)instances.numInstances()+0.5);
m_cycles++;
} while ((m_allTheRules[0].size() < m_numRules) &&
(Utils.grOrEq(m_minSupport, m_lowerBoundMinSupport))
/* (necSupport >= lowerBoundNumInstancesSupport)*/
/* (Utils.grOrEq(m_minSupport, m_lowerBoundMinSupport)) */ &&
(necSupport >= 1));
m_minSupport += m_delta;
}
/**
* Returns an enumeration describing the available options.
*
* @return an enumeration of all the available options.
*/
public Enumeration listOptions() {
String string1 = "\tThe required number of rules. (default = " + m_numRules + ")",
string2 =
"\tThe minimum confidence of a rule. (default = " + m_minMetric + ")",
string3 = "\tThe delta by which the minimum support is decreased in\n",
string4 = "\teach iteration. (default = " + m_delta + ")",
string5 =
"\tThe lower bound for the minimum support. (default = " +
m_lowerBoundMinSupport + ")",
string6 = "\tIf used, rules are tested for significance at\n",
string7 = "\tthe given level. Slower. (default = no significance testing)",
string8 = "\tIf set the itemsets found are also output. (default = no)",
stringType = "\tThe metric type by which to rank rules. (default = "
+"confidence)";
FastVector newVector = new FastVector(9);
newVector.addElement(new Option(string1, "N", 1,
"-N <required number of rules output>"));
newVector.addElement(new Option(stringType, "T", 1,
"-T <0=confidence | 1=lift | "
+"2=leverage | 3=Conviction>"));
newVector.addElement(new Option(string2, "C", 1,
"-C <minimum metric score of a rule>"));
newVector.addElement(new Option(string3 + string4, "D", 1,
"-D <delta for minimum support>"));
newVector.addElement(new Option("\tUpper bound for minimum support. "
+"(default = 1.0)", "U", 1,
"-U <upper bound for minimum support>"));
newVector.addElement(new Option(string5, "M", 1,
"-M <lower bound for minimum support>"));
newVector.addElement(new Option(string6 + string7, "S", 1,
"-S <significance level>"));
newVector.addElement(new Option(string8, "S", 0,
"-I"));
newVector.addElement(new Option("\tRemove columns that contain "
+"all missing values (default = no)"
, "R", 0,
"-R"));
newVector.addElement(new Option("\tReport progress iteratively. (default "
+"= no)", "V", 0,
"-V"));
return newVector.elements();
}
/**
* Parses a given list of options. Valid options are:<p>
*
* -N required number of rules <br>
* The required number of rules (default: 10). <p>
*
* -T type of metric by which to sort rules <br>
* 0 = confidence | 1 = lift | 2 = leverage | 3 = Conviction. <p>
*
* -C minimum metric score of a rule <br>
* The minimum confidence of a rule (default: 0.9). <p>
*
* -D delta for minimum support <br>
* The delta by which the minimum support is decreased in
* each iteration (default: 0.05).
*
* -U upper bound for minimum support <br>
* The upper bound for minimum support. Don't explicitly look for
* rules with more than this level of support. <p>
*
* -M lower bound for minimum support <br>
* The lower bound for the minimum support (default = 0.1). <p>
*
* -S significance level <br>
* If used, rules are tested for significance at
* the given level. Slower (default = no significance testing). <p>
*
* -I <br>
* If set the itemsets found are also output (default = no). <p>
*
* -V <br>
* If set then progress is reported iteratively during execution. <p>
*
* -R <br>
* If set then columns that contain all missing values are removed from
* the data. <p>
*
* @param options the list of options as an array of strings
* @exception Exception if an option is not supported
*/
public void setOptions(String[] options) throws Exception {
resetOptions();
String numRulesString = Utils.getOption('N', options),
minConfidenceString = Utils.getOption('C', options),
deltaString = Utils.getOption('D', options),
maxSupportString = Utils.getOption('U', options),
minSupportString = Utils.getOption('M', options),
significanceLevelString = Utils.getOption('S', options);
String metricTypeString = Utils.getOption('T', options);
if (metricTypeString.length() != 0) {
setMetricType(new SelectedTag(Integer.parseInt(metricTypeString),
TAGS_SELECTION));
}
if (numRulesString.length() != 0) {
m_numRules = Integer.parseInt(numRulesString);
}
if (minConfidenceString.length() != 0) {
m_minMetric = (new Double(minConfidenceString)).doubleValue();
}
if (deltaString.length() != 0) {
m_delta = (new Double(deltaString)).doubleValue();
}
if (maxSupportString.length() != 0) {
setUpperBoundMinSupport((new Double(maxSupportString)).doubleValue());
}
if (minSupportString.length() != 0) {
m_lowerBoundMinSupport = (new Double(minSupportString)).doubleValue();
}
if (significanceLevelString.length() != 0) {
m_significanceLevel = (new Double(significanceLevelString)).doubleValue();
}
m_outputItemSets = Utils.getFlag('I', options);
m_verbose = Utils.getFlag('V', options);
setRemoveAllMissingCols(Utils.getFlag('R', options));
}
/**
* Gets the current settings of the Apriori object.
*
* @return an array of strings suitable for passing to setOptions
*/
public String [] getOptions() {
String [] options = new String [16];
int current = 0;
if (m_outputItemSets) {
options[current++] = "-I";
}
if (getRemoveAllMissingCols()) {
options[current++] = "-R";
}
options[current++] = "-N"; options[current++] = "" + m_numRules;
options[current++] = "-T"; options[current++] = "" + m_metricType;
options[current++] = "-C"; options[current++] = "" + m_minMetric;
options[current++] = "-D"; options[current++] = "" + m_delta;
options[current++] = "-U"; options[current++] = ""+m_upperBoundMinSupport;
options[current++] = "-M"; options[current++] = ""+m_lowerBoundMinSupport;
options[current++] = "-S"; options[current++] = "" + m_significanceLevel;
while (current < options.length) {
options[current++] = "";
}
return options;
}
/**
* Outputs the size of all the generated sets of itemsets and the rules.
*/
public String toString() {
StringBuffer text = new StringBuffer();
if (m_Ls.size() <= 1)
return "\nNo large itemsets and rules found!\n";
text.append("\nApriori\n=======\n\n");
text.append("Minimum support: "
+ Utils.doubleToString(m_minSupport,2) + '\n');
text.append("Minimum metric <");
switch(m_metricType) {
case CONFIDENCE:
text.append("confidence>: ");
break;
case LIFT:
text.append("lift>: ");
break;
case LEVERAGE:
text.append("leverage>: ");
break;
case CONVICTION:
text.append("conviction>: ");
break;
}
text.append(Utils.doubleToString(m_minMetric,2)+'\n');
if (m_significanceLevel != -1)
text.append("Significance level: "+
Utils.doubleToString(m_significanceLevel,2)+'\n');
text.append("Number of cycles performed: " + m_cycles+'\n');
text.append("\nGenerated sets of large itemsets:\n");
for (int i = 0; i < m_Ls.size(); i++) {
text.append("\nSize of set of large itemsets L("+(i+1)+"): "+
((FastVector)m_Ls.elementAt(i)).size()+'\n');
if (m_outputItemSets) {
text.append("\nLarge Itemsets L("+(i+1)+"):\n");
for (int j = 0; j < ((FastVector)m_Ls.elementAt(i)).size(); j++)
text.append(((ItemSet)((FastVector)m_Ls.elementAt(i)).elementAt(j)).
toString(m_instances)+"\n");
}
}
text.append("\nBest rules found:\n\n");
for (int i = 0; i < m_allTheRules[0].size(); i++) {
text.append(Utils.doubleToString((double)i+1,
(int)(Math.log(m_numRules)/Math.log(10)+1),0)+
". " + ((ItemSet)m_allTheRules[0].elementAt(i)).
toString(m_instances)
+ " ==> " + ((ItemSet)m_allTheRules[1].elementAt(i)).
toString(m_instances) +" conf:("+
Utils.doubleToString(((Double)m_allTheRules[2].
elementAt(i)).doubleValue(),2)+")");
if (m_metricType != CONFIDENCE || m_significanceLevel != -1) {
text.append((m_metricType == LIFT ? " <" : "")+" lift:("+
Utils.doubleToString(((Double)m_allTheRules[3].
elementAt(i)).doubleValue(),2)
+")"+(m_metricType == LIFT ? ">" : ""));
text.append((m_metricType == LEVERAGE ? " <" : "")+" lev:("+
Utils.doubleToString(((Double)m_allTheRules[4].
elementAt(i)).doubleValue(),2)
+")");
text.append(" ["+
(int)(((Double)m_allTheRules[4].elementAt(i))
.doubleValue() * (double)m_instances.numInstances())
+"]"+(m_metricType == LEVERAGE ? ">" : ""));
text.append((m_metricType == CONVICTION ? " <" : "")+" conv:("+
Utils.doubleToString(((Double)m_allTheRules[5].
elementAt(i)).doubleValue(),2)
+")"+(m_metricType == CONVICTION ? ">" : ""));
}
text.append('\n');
}
return text.toString();
}
/**
* Returns the tip text for this property
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String removeAllMissingColsTipText() {
return "Remove columns with all missing values.";
}
/**
* Remove columns containing all missing values.
* @param r true if cols are to be removed.
*/
public void setRemoveAllMissingCols(boolean r) {
m_removeMissingCols = r;
}
/**
* Returns whether columns containing all missing values are to be removed
* @return true if columns are to be removed.
*/
public boolean getRemoveAllMissingCols() {
return m_removeMissingCols;
}
/**
* Returns the tip text for this property
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String upperBoundMinSupportTipText() {
return "Upper bound for minimum support. Start iteratively decreasing "
+"minimum support from this value.";
}
/**
* Get the value of upperBoundMinSupport.
*
* @return Value of upperBoundMinSupport.
*/
public double getUpperBoundMinSupport() {
return m_upperBoundMinSupport;
}
/**
* Set the value of upperBoundMinSupport.
*
* @param v Value to assign to upperBoundMinSupport.
*/
public void setUpperBoundMinSupport(double v) {
m_upperBoundMinSupport = v;
}
/**
* Returns the tip text for this property
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String lowerBoundMinSupportTipText() {
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -