📄 itemset.java
字号:
conv.addElement(new Double(convictionForRule(premise, consequence,
premise.m_counter,
consequenceUnconditionedCounter)));
}
} else {
double tempConf = confidenceForRule(premise, consequence);
double tempLift = liftForRule(premise, consequence,
consequenceUnconditionedCounter);
double tempLev = leverageForRule(premise, consequence,
premise.m_counter,
consequenceUnconditionedCounter);
double tempConv = convictionForRule(premise, consequence,
premise.m_counter,
consequenceUnconditionedCounter);
switch(metricType) {
case 1:
metric = tempLift;
break;
case 2:
metric = tempLev;
break;
case 3:
metric = tempConv;
break;
default:
throw new Exception("ItemSet: Unknown metric type!");
}
if (!(metric < minMetric)) {
premises.addElement(premise);
consequences.addElement(consequence);
conf.addElement(new Double(tempConf));
lift.addElement(new Double(tempLift));
lev.addElement(new Double(tempLev));
conv.addElement(new Double(tempConv));
}
}
}
}
rules[0] = premises;
rules[1] = consequences;
rules[2] = conf;
rules[3] = lift;
rules[4] = lev;
rules[5] = conv;
return rules;
}
/**
* Return a hashtable filled with the given item sets.
*
* @param itemSets the set of item sets to be used for filling the hash table
* @param initialSize the initial size of the hashtable
* @return the generated hashtable
*/
public static Hashtable getHashtable(FastVector itemSets, int initialSize) {
Hashtable hashtable = new Hashtable(initialSize);
for (int i = 0; i < itemSets.size(); i++) {
ItemSet current = (ItemSet)itemSets.elementAt(i);
hashtable.put(current, new Integer(current.m_counter));
}
return hashtable;
}
/**
* Produces a hash code for a item set.
*
* @return a hash code for a set of items
*/
public final int hashCode() {
long result = 0;
for (int i = m_items.length-1; i >= 0; i--)
result += (i * m_items[i]);
return (int)result;
}
/**
* Merges all item sets in the set of (k-1)-item sets
* to create the (k)-item sets and updates the counters.
*
* @param itemSets the set of (k-1)-item sets
* @param size the value of (k-1)
* @return the generated (k)-item sets
*/
public static FastVector mergeAllItemSets(FastVector itemSets, int size,
int totalTrans) {
FastVector newVector = new FastVector();
ItemSet result;
int numFound, k;
for (int i = 0; i < itemSets.size(); i++) {
ItemSet first = (ItemSet)itemSets.elementAt(i);
out:
for (int j = i+1; j < itemSets.size(); j++) {
ItemSet second = (ItemSet)itemSets.elementAt(j);
result = new ItemSet(totalTrans);
result.m_items = new int[first.m_items.length];
// Find and copy common prefix of size 'size'
numFound = 0;
k = 0;
while (numFound < size) {
if (first.m_items[k] == second.m_items[k]) {
if (first.m_items[k] != -1)
numFound++;
result.m_items[k] = first.m_items[k];
} else
break out;
k++;
}
// Check difference
while (k < first.m_items.length) {
if ((first.m_items[k] != -1) && (second.m_items[k] != -1))
break;
else {
if (first.m_items[k] != -1)
result.m_items[k] = first.m_items[k];
else
result.m_items[k] = second.m_items[k];
}
k++;
}
if (k == first.m_items.length) {
result.m_counter = 0;
newVector.addElement(result);
}
}
}
return newVector;
}
/**
* Prunes a set of (k)-item sets using the given (k-1)-item sets.
*
* @param toPrune the set of (k)-item sets to be pruned
* @param kMinusOne the (k-1)-item sets to be used for pruning
* @return the pruned set of item sets
*/
public static FastVector pruneItemSets(FastVector toPrune, Hashtable kMinusOne) {
FastVector newVector = new FastVector(toPrune.size());
int help, j;
for (int i = 0; i < toPrune.size(); i++) {
ItemSet current = (ItemSet)toPrune.elementAt(i);
for (j = 0; j < current.m_items.length; j++)
if (current.m_items[j] != -1) {
help = current.m_items[j];
current.m_items[j] = -1;
if (kMinusOne.get(current) == null) {
current.m_items[j] = help;
break;
} else
current.m_items[j] = help;
}
if (j == current.m_items.length)
newVector.addElement(current);
}
return newVector;
}
/**
* Prunes a set of rules.
*
* @param rules a two-dimensional array of lists of item sets. The first list
* of item sets contains the premises, the second one the consequences.
* @param minConfidence the minimum confidence the rules have to have
*/
public static void pruneRules(FastVector[] rules, double minConfidence) {
FastVector newPremises = new FastVector(rules[0].size()),
newConsequences = new FastVector(rules[1].size()),
newConf = new FastVector(rules[2].size());
for (int i = 0; i < rules[0].size(); i++)
if (!(((Double)rules[2].elementAt(i)).doubleValue() <
minConfidence)) {
newPremises.addElement(rules[0].elementAt(i));
newConsequences.addElement(rules[1].elementAt(i));
newConf.addElement(rules[2].elementAt(i));
}
rules[0] = newPremises;
rules[1] = newConsequences;
rules[2] = newConf;
}
/**
* Converts the header info of the given set of instances into a set
* of item sets (singletons). The ordering of values in the header file
* determines the lexicographic order.
*
* @param instances the set of instances whose header info is to be used
* @return a set of item sets, each containing a single item
* @exception Exception if singletons can't be generated successfully
*/
public static FastVector singletons(Instances instances) throws Exception {
FastVector setOfItemSets = new FastVector();
ItemSet current;
for (int i = 0; i < instances.numAttributes(); i++) {
if (instances.attribute(i).isNumeric())
throw new Exception("Can't handle numeric attributes!");
for (int j = 0; j < instances.attribute(i).numValues(); j++) {
current = new ItemSet(instances.numInstances());
current.m_items = new int[instances.numAttributes()];
for (int k = 0; k < instances.numAttributes(); k++)
current.m_items[k] = -1;
current.m_items[i] = j;
setOfItemSets.addElement(current);
}
}
return setOfItemSets;
}
/**
* Subtracts an item set from another one.
*
* @param toSubtract the item set to be subtracted from this one.
* @return an item set that only contains items form this item sets that
* are not contained by toSubtract
*/
public final ItemSet subtract(ItemSet toSubtract) {
ItemSet result = new ItemSet(m_totalTransactions);
result.m_items = new int[m_items.length];
for (int i = 0; i < m_items.length; i++)
if (toSubtract.m_items[i] == -1)
result.m_items[i] = m_items[i];
else
result.m_items[i] = -1;
result.m_counter = 0;
return result;
}
/**
* Outputs the support for an item set.
*
* @return the support
*/
public final int support() {
return m_counter;
}
/**
* Returns the contents of an item set as a string.
*
* @param instances contains the relevant header information
* @return string describing the item set
*/
public final String toString(Instances instances) {
StringBuffer text = new StringBuffer();
for (int i = 0; i < instances.numAttributes(); i++)
if (m_items[i] != -1) {
text.append(instances.attribute(i).name()+'=');
text.append(instances.attribute(i).value(m_items[i])+' ');
}
text.append(m_counter);
return text.toString();
}
/**
* Updates counter of item set with respect to given transaction.
*
* @param instance the instance to be used for ubdating the counter
*/
public final void upDateCounter(Instance instance) {
if (containedBy(instance))
m_counter++;
}
/**
* Updates counters for a set of item sets and a set of instances.
*
* @param itemSets the set of item sets which are to be updated
* @param instances the instances to be used for updating the counters
*/
public static void upDateCounters(FastVector itemSets, Instances instances) {
for (int i = 0; i < instances.numInstances(); i++) {
Enumeration em = itemSets.elements();
while (em.hasMoreElements())
((ItemSet)em.nextElement()).upDateCounter(instances.instance(i));
}
}
/**
* Generates rules with more than one item in the consequence.
*
* @param rules all the rules having (k-1)-item sets as consequences
* @param numItemsInSet the size of the item set for which the rules
* are to be generated
* @param numItemsInConsequence the value of (k-1)
* @param minConfidence the minimum confidence a rule has to have
* @param hashtables the hashtables containing all(!) previously generated
* item sets
* @return all the rules having (k)-item sets as consequences
*/
private final FastVector[] moreComplexRules(FastVector[] rules,
int numItemsInSet,
int numItemsInConsequence,
double minConfidence,
FastVector hashtables) {
ItemSet newPremise;
FastVector[] result, moreResults;
FastVector newConsequences, newPremises = new FastVector(),
newConf = new FastVector();
Hashtable hashtable;
if (numItemsInSet > numItemsInConsequence + 1) {
hashtable =
(Hashtable)hashtables.elementAt(numItemsInSet - numItemsInConsequence - 2);
newConsequences = mergeAllItemSets(rules[1],
numItemsInConsequence - 1,
m_totalTransactions);
Enumeration em = newConsequences.elements();
while (em.hasMoreElements()) {
ItemSet current = (ItemSet)em.nextElement();
current.m_counter = m_counter;
newPremise = subtract(current);
newPremise.m_counter = ((Integer)hashtable.get(newPremise)).intValue();
newPremises.addElement(newPremise);
newConf.addElement(new Double(confidenceForRule(newPremise, current)));
}
result = new FastVector[3];
result[0] = newPremises;
result[1] = newConsequences;
result[2] = newConf;
pruneRules(result, minConfidence);
moreResults = moreComplexRules(result,numItemsInSet,numItemsInConsequence+1,
minConfidence, hashtables);
if (moreResults != null)
for (int i = 0; i < moreResults[0].size(); i++) {
result[0].addElement(moreResults[0].elementAt(i));
result[1].addElement(moreResults[1].elementAt(i));
result[2].addElement(moreResults[2].elementAt(i));
}
return result;
} else
return null;
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -