📄 contingencytables.java
字号:
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* ContingencyTables.java
* Copyright (C) 1999 Eibe Frank
*
*/
package weka.core;
/**
* Class implementing some statistical routines for contingency tables.
*
* @author Eibe Frank (eibe@cs.waikato.ac.nz)
* @version $Revision$
*/
public class ContingencyTables {
/** The natural logarithm of 2 */
private static double log2 = Math.log(2);
/**
* Returns chi-squared probability for a given matrix.
*
* @param matrix the contigency table
* @param yates is Yates' correction to be used?
* @return the chi-squared probability
*/
public static double chiSquared(double [][] matrix, boolean yates) {
int df = (matrix.length - 1) * (matrix[0].length - 1);
return Statistics.chiSquaredProbability(chiVal(matrix, yates), df);
}
/**
* Computes chi-squared statistic for a contingency table.
*
* @param matrix the contigency table
* @param yates is Yates' correction to be used?
* @return the value of the chi-squared statistic
*/
public static double chiVal(double [][] matrix, boolean useYates) {
int df, nrows, ncols, row, col;
double[] rtotal, ctotal;
double expect = 0, chival = 0, n = 0;
boolean yates = true;
nrows = matrix.length;
ncols = matrix[0].length;
rtotal = new double [nrows];
ctotal = new double [ncols];
for (row = 0; row < nrows; row++) {
for (col = 0; col < ncols; col++) {
rtotal[row] += matrix[row][col];
ctotal[col] += matrix[row][col];
n += matrix[row][col];
}
}
df = (nrows - 1)*(ncols - 1);
if ((df > 1) || (!useYates)) {
yates = false;
} else if (df <= 0) {
return 0;
}
chival = 0.0;
for (row = 0; row < nrows; row++) {
if (Utils.gr(rtotal[row], 0)) {
for (col = 0; col < ncols; col++) {
if (Utils.gr(ctotal[col], 0)) {
expect = (ctotal[col] * rtotal[row]) / n;
chival += chiCell (matrix[row][col], expect, yates);
}
}
}
}
return chival;
}
/**
* Tests if Cochran's criterion is fullfilled for the given
* contingency table. Rows and columns with all zeros are not considered
* relevant.
*
* @param matrix the contigency table to be tested
* @return true if contingency table is ok, false if not
*/
public static boolean cochransCriterion(double[][] matrix) {
double[] rtotal, ctotal;
double n = 0, expect, smallfreq = 5;
int smallcount = 0, nonZeroRows = 0, nonZeroColumns = 0, nrows, ncols,
row, col;
nrows = matrix.length;
ncols = matrix[0].length;
rtotal = new double [nrows];
ctotal = new double [ncols];
for (row = 0; row < nrows; row++) {
for (col = 0; col < ncols; col++) {
rtotal[row] += matrix[row][col];
ctotal[col] += matrix[row][col];
n += matrix[row][col];
}
}
for (row = 0; row < nrows; row++) {
if (Utils.gr(rtotal[row], 0)) {
nonZeroRows++;
}
}
for (col = 0; col < ncols; col++) {
if (Utils.gr(ctotal[col], 0)) {
nonZeroColumns++;
}
}
for (row = 0; row < nrows; row++) {
if (Utils.gr(rtotal[row], 0)) {
for (col = 0; col < ncols; col++) {
if (Utils.gr(ctotal[col], 0)) {
expect = (ctotal[col] * rtotal[row]) / n;
if (Utils.sm(expect, smallfreq)) {
if (Utils.sm(expect, 1)) {
return false;
} else {
smallcount++;
if (smallcount > (nonZeroRows * nonZeroColumns) / smallfreq) {
return false;
}
}
}
}
}
}
}
return true;
}
/**
* Computes Cramer's V for a contingency table.
*
* @param matrix the contingency table
* @return Cramer's V
*/
public static double CramersV(double [][] matrix) {
int row, col, nrows,ncols, min;
double n = 0;
nrows = matrix.length;
ncols = matrix[0].length;
for (row = 0; row < nrows; row++) {
for (col = 0; col < ncols; col++) {
n += matrix[row][col];
}
}
min = nrows < ncols ? nrows-1 : ncols-1;
if ((min == 0) || Utils.eq(n, 0))
return 0;
return Math.sqrt(chiVal(matrix, false) / (n * (double)min));
}
/**
* Computes the entropy of the given array.
*
* @param array the array
* @return the entropy
*/
public static double entropy(double[] array) {
double returnValue = 0, sum = 0;
for (int i = 0; i < array.length; i++) {
returnValue -= lnFunc(array[i]);
sum += array[i];
}
if (Utils.eq(sum, 0)) {
return 0;
} else {
return (returnValue + lnFunc(sum)) / (sum * log2);
}
}
/**
* Computes conditional entropy of the rows given
* the columns.
*
* @param matrix the contingency table
* @return the conditional entropy of the rows given the columns
*/
public static double entropyConditionedOnColumns(double[][] matrix) {
double returnValue = 0, sumForColumn, total = 0;
for (int j = 0; j < matrix[0].length; j++) {
sumForColumn = 0;
for (int i = 0; i < matrix.length; i++) {
returnValue = returnValue + lnFunc(matrix[i][j]);
sumForColumn += matrix[i][j];
}
returnValue = returnValue - lnFunc(sumForColumn);
total += sumForColumn;
}
if (Utils.eq(total, 0)) {
return 0;
}
return -returnValue / (total * log2);
}
/**
* Computes conditional entropy of the columns given
* the rows.
*
* @param matrix the contingency table
* @return the conditional entropy of the columns given the rows
*/
public static double entropyConditionedOnRows(double[][] matrix) {
double returnValue = 0, sumForRow, total = 0;
for (int i = 0; i < matrix.length; i++) {
sumForRow = 0;
for (int j = 0; j < matrix[0].length; j++) {
returnValue = returnValue + lnFunc(matrix[i][j]);
sumForRow += matrix[i][j];
}
returnValue = returnValue - lnFunc(sumForRow);
total += sumForRow;
}
if (Utils.eq(total, 0)) {
return 0;
}
return -returnValue / (total * log2);
}
/**
* Computes conditional entropy of the columns given the rows
* of the test matrix with respect to the train matrix. Uses a
* Laplace prior. Does NOT normalize the entropy.
*
* @param train the train matrix
* @param test the test matrix
* @param the number of symbols for Laplace
* @return the entropy
*/
public static double entropyConditionedOnRows(double[][] train,
double[][] test,
double numClasses) {
double returnValue = 0, trainSumForRow, testSumForRow, testSum = 0;
for (int i = 0; i < test.length; i++) {
trainSumForRow = 0;
testSumForRow = 0;
for (int j = 0; j < test[0].length; j++) {
returnValue -= test[i][j] * Math.log(train[i][j] + 1);
trainSumForRow += train[i][j];
testSumForRow += test[i][j];
}
testSum = testSumForRow;
returnValue += testSumForRow * Math.log(trainSumForRow +
numClasses);
}
return returnValue / (testSum * log2);
}
/**
* Computes the rows' entropy for the given contingency table.
*
* @param matrix the contingency table
* @return the rows' entropy
*/
public static double entropyOverRows(double[][] matrix) {
double returnValue = 0, sumForRow, total = 0;
for (int i = 0; i < matrix.length; i++) {
sumForRow = 0;
for (int j = 0; j < matrix[0].length; j++) {
sumForRow += matrix[i][j];
}
returnValue = returnValue - lnFunc(sumForRow);
total += sumForRow;
}
if (Utils.eq(total, 0)) {
return 0;
}
return (returnValue + lnFunc(total)) / (total * log2);
}
/**
* Computes the columns' entropy for the given contingency table.
*
* @param matrix the contingency table
* @return the columns' entropy
*/
public static double entropyOverColumns(double[][] matrix){
double returnValue = 0, sumForColumn, total = 0;
for (int j = 0; j < matrix[0].length; j++){
sumForColumn = 0;
for (int i = 0; i < matrix.length; i++) {
sumForColumn += matrix[i][j];
}
returnValue = returnValue - lnFunc(sumForColumn);
total += sumForColumn;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -