📄 randomsplitresultproducer.java
字号:
*/
public Object [] getKeyTypes() {
Object [] keyTypes = m_SplitEvaluator.getKeyTypes();
// Add in the types of our extra fields
Object [] newKeyTypes = new String [keyTypes.length + 2];
newKeyTypes[0] = new String();
newKeyTypes[1] = new String();
System.arraycopy(keyTypes, 0, newKeyTypes, 2, keyTypes.length);
return newKeyTypes;
}
/**
* Gets the names of each of the columns produced for a single run.
* This method should really be static.
*
* @return an array containing the name of each column
*/
public String [] getResultNames() {
String [] resultNames = m_SplitEvaluator.getResultNames();
// Add in the names of our extra Result fields
String [] newResultNames = new String [resultNames.length + 1];
newResultNames[0] = TIMESTAMP_FIELD_NAME;
System.arraycopy(resultNames, 0, newResultNames, 1, resultNames.length);
return newResultNames;
}
/**
* Gets the data types of each of the columns produced for a single run.
* This method should really be static.
*
* @return an array containing objects of the type of each column. The
* objects should be Strings, or Doubles.
*/
public Object [] getResultTypes() {
Object [] resultTypes = m_SplitEvaluator.getResultTypes();
// Add in the types of our extra Result fields
Object [] newResultTypes = new Object [resultTypes.length + 1];
newResultTypes[0] = new Double(0);
System.arraycopy(resultTypes, 0, newResultTypes, 1, resultTypes.length);
return newResultTypes;
}
/**
* Gets a description of the internal settings of the result
* producer, sufficient for distinguishing a ResultProducer
* instance from another with different settings (ignoring
* those settings set through this interface). For example,
* a cross-validation ResultProducer may have a setting for the
* number of folds. For a given state, the results produced should
* be compatible. Typically if a ResultProducer is an OptionHandler,
* this string will represent the command line arguments required
* to set the ResultProducer to that state.
*
* @return the description of the ResultProducer state, or null
* if no state is defined
*/
public String getCompatibilityState() {
String result = "-P " + m_TrainPercent;
if (!getRandomizeData()) {
result += " -R";
}
if (m_SplitEvaluator == null) {
result += " <null SplitEvaluator>";
} else {
result += " -W " + m_SplitEvaluator.getClass().getName();
}
return result + " --";
}
/**
* Returns the tip text for this property
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String outputFileTipText() {
return "Set the destination for saving raw output. If the rawOutput "
+"option is selected, then output from the splitEvaluator for "
+"individual train-test splits is saved. If the destination is a "
+"directory, "
+"then each output is saved to an individual gzip file; if the "
+"destination is a file, then each output is saved as an entry "
+"in a zip file.";
}
/**
* Get the value of OutputFile.
*
* @return Value of OutputFile.
*/
public File getOutputFile() {
return m_OutputFile;
}
/**
* Set the value of OutputFile.
*
* @param newOutputFile Value to assign to OutputFile.
*/
public void setOutputFile(File newOutputFile) {
m_OutputFile = newOutputFile;
}
/**
* Returns the tip text for this property
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String randomizeDataTipText() {
return "Do not randomize dataset and do not perform probabilistic rounding " +
"if true";
}
/**
* Get if dataset is to be randomized
* @return true if dataset is to be randomized
*/
public boolean getRandomizeData() {
return m_randomize;
}
/**
* Set to true if dataset is to be randomized
* @param d true if dataset is to be randomized
*/
public void setRandomizeData(boolean d) {
m_randomize = d;
}
/**
* Returns the tip text for this property
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String rawOutputTipText() {
return "Save raw output (useful for debugging). If set, then output is "
+"sent to the destination specified by outputFile";
}
/**
* Get if raw split evaluator output is to be saved
* @return true if raw split evalutor output is to be saved
*/
public boolean getRawOutput() {
return m_debugOutput;
}
/**
* Set to true if raw split evaluator output is to be saved
* @param d true if output is to be saved
*/
public void setRawOutput(boolean d) {
m_debugOutput = d;
}
/**
* Returns the tip text for this property
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String trainPercentTipText() {
return "Set the percentage of data to use for training.";
}
/**
* Get the value of TrainPercent.
*
* @return Value of TrainPercent.
*/
public double getTrainPercent() {
return m_TrainPercent;
}
/**
* Set the value of TrainPercent.
*
* @param newTrainPercent Value to assign to TrainPercent.
*/
public void setTrainPercent(double newTrainPercent) {
m_TrainPercent = newTrainPercent;
}
/**
* Returns the tip text for this property
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String splitEvaluatorTipText() {
return "The evaluator to apply to the test data. "
+"This may be a classifier, regression scheme etc.";
}
/**
* Get the SplitEvaluator.
*
* @return the SplitEvaluator.
*/
public SplitEvaluator getSplitEvaluator() {
return m_SplitEvaluator;
}
/**
* Set the SplitEvaluator.
*
* @param newSplitEvaluator new SplitEvaluator to use.
*/
public void setSplitEvaluator(SplitEvaluator newSplitEvaluator) {
m_SplitEvaluator = newSplitEvaluator;
m_SplitEvaluator.setAdditionalMeasures(m_AdditionalMeasures);
}
/**
* Returns an enumeration describing the available options..
*
* @return an enumeration of all the available options.
*/
public Enumeration listOptions() {
Vector newVector = new Vector(5);
newVector.addElement(new Option(
"\tThe percentage of instances to use for training.\n"
+"\t(default 66)",
"P", 1,
"-P <percent>"));
newVector.addElement(new Option(
"Save raw split evaluator output.",
"D",0,"-D"));
newVector.addElement(new Option(
"\tThe filename where raw output will be stored.\n"
+"\tIf a directory name is specified then then individual\n"
+"\toutputs will be gzipped, otherwise all output will be\n"
+"\tzipped to the named file. Use in conjuction with -D."
+"\t(default splitEvalutorOut.zip)",
"O", 1,
"-O <file/directory name/path>"));
newVector.addElement(new Option(
"\tThe full class name of a SplitEvaluator.\n"
+"\teg: weka.experiment.ClassifierSplitEvaluator",
"W", 1,
"-W <class name>"));
newVector.addElement(new Option(
"\tSet when data is not to be randomized and the data sets' size.\n"
+ "\tIs not to be determined via probabilistic rounding.",
"R",0,"-R"));
if ((m_SplitEvaluator != null) &&
(m_SplitEvaluator instanceof OptionHandler)) {
newVector.addElement(new Option(
"",
"", 0, "\nOptions specific to split evaluator "
+ m_SplitEvaluator.getClass().getName() + ":"));
Enumeration em = ((OptionHandler)m_SplitEvaluator).listOptions();
while (em.hasMoreElements()) {
newVector.addElement(em.nextElement());
}
}
return newVector.elements();
}
/**
* Parses a given list of options. Valid options are:<p>
*
* -P num <br>
* The percent of instances used for training. <p>
*
* -D <br>
* Specify that raw split evaluator output is to be saved. <p>
*
* -R <br>
* Do not randomize the dataset. <p>
*
* -O file/directory name <br>
* Specify the file or directory to which raw split evaluator output
* is to be saved. If a directory is specified, then each output string
* is saved as an individual gzip file. If a file is specified, then
* each output string is saved as an entry in a zip file. <p>
*
* -W classname <br>
* Specify the full class name of the split evaluator. <p>
*
* All option after -- will be passed to the split evaluator.
*
* @param options the list of options as an array of strings
* @exception Exception if an option is not supported
*/
public void setOptions(String[] options) throws Exception {
setRawOutput(Utils.getFlag('D', options));
setRandomizeData(!Utils.getFlag('R', options));
String fName = Utils.getOption('O', options);
if (fName.length() != 0) {
setOutputFile(new File(fName));
}
String trainPct = Utils.getOption('P', options);
if (trainPct.length() != 0) {
setTrainPercent((new Double(trainPct)).doubleValue());
} else {
setTrainPercent(66);
}
String seName = Utils.getOption('W', options);
if (seName.length() == 0) {
throw new Exception("A SplitEvaluator must be specified with"
+ " the -W option.");
}
// Do it first without options, so if an exception is thrown during
// the option setting, listOptions will contain options for the actual
// SE.
setSplitEvaluator((SplitEvaluator)Utils.forName(
SplitEvaluator.class,
seName,
null));
if (getSplitEvaluator() instanceof OptionHandler) {
((OptionHandler) getSplitEvaluator())
.setOptions(Utils.partitionOptions(options));
}
}
/**
* Gets the current settings of the result producer.
*
* @return an array of strings suitable for passing to setOptions
*/
public String [] getOptions() {
String [] seOptions = new String [0];
if ((m_SplitEvaluator != null) &&
(m_SplitEvaluator instanceof OptionHandler)) {
seOptions = ((OptionHandler)m_SplitEvaluator).getOptions();
}
String [] options = new String [seOptions.length + 9];
int current = 0;
options[current++] = "-P"; options[current++] = "" + getTrainPercent();
if (getRawOutput()) {
options[current++] = "-D";
}
if (!getRandomizeData()) {
options[current++] = "-R";
}
options[current++] = "-O";
options[current++] = getOutputFile().getName();
if (getSplitEvaluator() != null) {
options[current++] = "-W";
options[current++] = getSplitEvaluator().getClass().getName();
}
options[current++] = "--";
System.arraycopy(seOptions, 0, options, current,
seOptions.length);
current += seOptions.length;
while (current < options.length) {
options[current++] = "";
}
return options;
}
/**
* Gets a text descrption of the result producer.
*
* @return a text description of the result producer.
*/
public String toString() {
String result = "RandomSplitResultProducer: ";
result += getCompatibilityState();
if (m_Instances == null) {
result += ": <null Instances>";
} else {
result += ": " + Utils.backQuoteChars(m_Instances.relationName());
}
return result;
}
} // RandomSplitResultProducer
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -