⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 regressionsplitevaluator.java

📁 一个数据挖掘软件ALPHAMINERR的整个过程的JAVA版源代码
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *    RegressionSplitEvaluator.java
 *    Copyright (C) 1999 Len Trigg
 *
 */


package weka.experiment;

import java.io.ObjectStreamClass;
import java.io.Serializable;
import java.util.Enumeration;
import java.util.Vector;

import weka.classifiers.Classifier;
import weka.classifiers.Evaluation;
import weka.core.AdditionalMeasureProducer;
import weka.core.Attribute;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.Summarizable;
import weka.core.Utils;

/**
 * A SplitEvaluator that produces results for a classification scheme
 * on a numeric class attribute.
 *
 * @author Len Trigg (trigg@cs.waikato.ac.nz)
 * @version $Revision$
 */
public class RegressionSplitEvaluator implements SplitEvaluator, 
  OptionHandler, AdditionalMeasureProducer {
  
  /** The classifier used for evaluation */
  protected Classifier m_Classifier = new weka.classifiers.rules.ZeroR();
  
  /** The names of any additional measures to look for in SplitEvaluators */
  protected String [] m_AdditionalMeasures = null;

  /** Array of booleans corresponding to the measures in m_AdditionalMeasures
      indicating which of the AdditionalMeasures the current classifier
      can produce */
  protected boolean [] m_doesProduce = null;

  /** Holds the statistics for the most recent application of the classifier */
  protected String m_result = null;

  /** The classifier options (if any) */
  protected String m_ClassifierOptions = "";

  /** The classifier version */
  protected String m_ClassifierVersion = "";

  /** The length of a key */
  private static final int KEY_SIZE = 3;

  /** The length of a result */
  private static final int RESULT_SIZE = 15;

  /**
   * No args constructor.
   */
  public RegressionSplitEvaluator() {

    updateOptions();
  }

  /**
   * Returns a string describing this split evaluator
   * @return a description of the split evaluator suitable for
   * displaying in the explorer/experimenter gui
   */
  public String globalInfo() {
    return "A SplitEvaluator that produces results for a classification "
      +"scheme on a numeric class attribute.";
  }

  /**
   * Returns an enumeration describing the available options..
   *
   * @return an enumeration of all the available options.
   */
  public Enumeration listOptions() {

    Vector newVector = new Vector(1);

    newVector.addElement(new Option(
	     "\tThe full class name of the classifier.\n"
	      +"\teg: weka.classifiers.bayes.NaiveBayes", 
	     "W", 1, 
	     "-W <class name>"));

    if ((m_Classifier != null) &&
	(m_Classifier instanceof OptionHandler)) {
      newVector.addElement(new Option(
	     "",
	     "", 0, "\nOptions specific to classifier "
	     + m_Classifier.getClass().getName() + ":"));
      Enumeration em = ((OptionHandler)m_Classifier).listOptions();
      while (em.hasMoreElements()) {
	newVector.addElement(em.nextElement());
      }
    }
    return newVector.elements();
  }

  /**
   * Parses a given list of options. Valid options are:<p>
   *
   * -W classname <br>
   * Specify the full class name of the classifier to evaluate. <p>
   *
   * All option after -- will be passed to the classifier.
   *
   * @param options the list of options as an array of strings
   * @exception Exception if an option is not supported
   */
  public void setOptions(String[] options) throws Exception {
    
    String cName = Utils.getOption('W', options);
    if (cName.length() == 0) {
      throw new Exception("A classifier must be specified with"
			  + " the -W option.");
    }
    // Do it first without options, so if an exception is thrown during
    // the option setting, listOptions will contain options for the actual
    // Classifier.
    setClassifier(Classifier.forName(cName, null));
    if (getClassifier() instanceof OptionHandler) {
      ((OptionHandler) getClassifier())
	.setOptions(Utils.partitionOptions(options));
      updateOptions();
    }
  }

  /**
   * Gets the current settings of the Classifier.
   *
   * @return an array of strings suitable for passing to setOptions
   */
  public String [] getOptions() {

    String [] classifierOptions = new String [0];
    if ((m_Classifier != null) && 
	(m_Classifier instanceof OptionHandler)) {
      classifierOptions = ((OptionHandler)m_Classifier).getOptions();
    }
    
    String [] options = new String [classifierOptions.length + 3];
    int current = 0;

    if (getClassifier() != null) {
      options[current++] = "-W";
      options[current++] = getClassifier().getClass().getName();
    }
    options[current++] = "--";

    System.arraycopy(classifierOptions, 0, options, current, 
		     classifierOptions.length);
    current += classifierOptions.length;
    while (current < options.length) {
      options[current++] = "";
    }
    return options;
  }

  /**
   * Set a list of method names for additional measures to look for
   * in Classifiers. This could contain many measures (of which only a
   * subset may be produceable by the current Classifier) if an experiment
   * is the type that iterates over a set of properties.
   * @param additionalMeasures an array of method names.
   */
  public void setAdditionalMeasures(String [] additionalMeasures) {
    m_AdditionalMeasures = additionalMeasures;

    // determine which (if any) of the additional measures this classifier
    // can produce
    if (m_AdditionalMeasures != null && m_AdditionalMeasures.length > 0) {
      m_doesProduce = new boolean [m_AdditionalMeasures.length];

      if (m_Classifier instanceof AdditionalMeasureProducer) {
	Enumeration en = ((AdditionalMeasureProducer)m_Classifier).
	  emerateMeasures();
	while (en.hasMoreElements()) {
	  String mname = (String)en.nextElement();
	  for (int j=0;j<m_AdditionalMeasures.length;j++) {
	    if (mname.compareToIgnoreCase(m_AdditionalMeasures[j]) == 0) {
	      m_doesProduce[j] = true;
	    }
	  }
	}
      }
    } else {
      m_doesProduce = null;
    }
  }
  

    /**
   * Returns an enumeration of any additional measure names that might be
   * in the classifier
   * @return an enumeration of the measure names
   */
  public Enumeration emerateMeasures() {
    Vector newVector = new Vector();
    if (m_Classifier instanceof AdditionalMeasureProducer) {
      Enumeration en = ((AdditionalMeasureProducer)m_Classifier).
	emerateMeasures();
      while (en.hasMoreElements()) {
	String mname = (String)en.nextElement();
	newVector.addElement(mname);
      }
    }
    return newVector.elements();
  }
  
  /**
   * Returns the value of the named measure
   * @param measureName the name of the measure to query for its value
   * @return the value of the named measure
   * @exception IllegalArgumentException if the named measure is not supported
   */
  public double getMeasure(String additionalMeasureName) {
    if (m_Classifier instanceof AdditionalMeasureProducer) {
      return ((AdditionalMeasureProducer)m_Classifier).
	getMeasure(additionalMeasureName);
    } else {
      throw new IllegalArgumentException("RegressionSplitEvaluator: "
			  +"Can't return value for : "+additionalMeasureName
			  +". "+m_Classifier.getClass().getName()+" "
			  +"is not an AdditionalMeasureProducer");
    }
  }

  /**
   * Gets the data types of each of the key columns produced for a single run.
   * The number of key fields must be constant
   * for a given SplitEvaluator.
   *
   * @return an array containing objects of the type of each key column. The 
   * objects should be Strings, or Doubles.
   */
  public Object [] getKeyTypes() {

    Object [] keyTypes = new Object[KEY_SIZE];
    keyTypes[0] = "";
    keyTypes[1] = "";
    keyTypes[2] = "";
    return keyTypes;
  }

  /**
   * Gets the names of each of the key columns produced for a single run.
   * The number of key fields must be constant
   * for a given SplitEvaluator.
   *
   * @return an array containing the name of each key column
   */
  public String [] getKeyNames() {

    String [] keyNames = new String[KEY_SIZE];
    keyNames[0] = "Scheme";
    keyNames[1] = "Scheme_options";
    keyNames[2] = "Scheme_version_ID";
    return keyNames;
  }

  /**
   * Gets the key describing the current SplitEvaluator. For example
   * This may contain the name of the classifier used for classifier
   * predictive evaluation. The number of key fields must be constant
   * for a given SplitEvaluator.
   *
   * @return an array of objects containing the key.
   */
  public Object [] getKey(){

    Object [] key = new Object[KEY_SIZE];
    key[0] = m_Classifier.getClass().getName();
    key[1] = m_ClassifierOptions;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -