📄 learningrateresultproducer.java
字号:
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* LearningRateResultProducer.java
* Copyright (C) 1999 Len Trigg
*
*/
package weka.experiment;
import java.util.Enumeration;
import java.util.Random;
import java.util.Vector;
import weka.core.AdditionalMeasureProducer;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.Utils;
/**
* LearningRateResultProducer takes the results from a ResultProducer
* and submits the average to the result listener. For non-numeric
* result fields, the first value is used.
*
* @author Len Trigg (trigg@cs.waikato.ac.nz)
* @version $Revision$
*/
public class LearningRateResultProducer
implements ResultListener, ResultProducer, OptionHandler,
AdditionalMeasureProducer {
/** The dataset of interest */
protected Instances m_Instances;
/** The ResultListener to send results to */
protected ResultListener m_ResultListener = new CSVResultListener();
/** The ResultProducer used to generate results */
protected ResultProducer m_ResultProducer
= new AveragingResultProducer();
/** The names of any additional measures to look for in SplitEvaluators */
protected String [] m_AdditionalMeasures = null;
/**
* The minimum number of instances to use. If this is zero, the first
* step will contain m_StepSize instances
*/
protected int m_LowerSize = 0;
/**
* The maximum number of instances to use. -1 indicates no maximum
* (other than the total number of instances)
*/
protected int m_UpperSize = -1;
/** The number of instances to add at each step */
protected int m_StepSize = 10;
/** The current dataset size during stepping */
protected int m_CurrentSize = 0;
/* The name of the key field containing the learning rate step number */
public static String STEP_FIELD_NAME = "Total_instances";
/**
* Returns a string describing this result producer
* @return a description of the result producer suitable for
* displaying in the explorer/experimenter gui
*/
public String globalInfo() {
return "Tells a sub-ResultProducer to reproduce the current run for "
+"varying sized subsamples of the dataset. Normally used with "
+"an AveragingResultProducer and CrossValidationResultProducer "
+"combo to generate learning curve results.";
}
/**
* Determines if there are any constraints (imposed by the
* destination) on the result columns to be produced by
* resultProducers. Null should be returned if there are NO
* constraints, otherwise a list of column names should be
* returned as an array of Strings.
* @param rp the ResultProducer to which the constraints will apply
* @return an array of column names to which resutltProducer's
* results will be restricted.
* @exception Exception if constraints can't be determined
*/
public String [] determineColumnConstraints(ResultProducer rp)
throws Exception {
return null;
}
/**
* Gets the keys for a specified run number. Different run
* numbers correspond to different randomizations of the data. Keys
* produced should be sent to the current ResultListener
*
* @param run the run number to get keys for.
* @exception Exception if a problem occurs while getting the keys
*/
public void doRunKeys(int run) throws Exception {
if (m_ResultProducer == null) {
throw new Exception("No ResultProducer set");
}
if (m_ResultListener == null) {
throw new Exception("No ResultListener set");
}
if (m_Instances == null) {
throw new Exception("No Instances set");
}
// Tell the resultproducer to send results to us
m_ResultProducer.setResultListener(this);
m_ResultProducer.setInstances(m_Instances);
// For each subsample size
if (m_LowerSize == 0) {
m_CurrentSize = m_StepSize;
} else {
m_CurrentSize = m_LowerSize;
}
while (m_CurrentSize <= m_Instances.numInstances() &&
((m_UpperSize == -1) ||
(m_CurrentSize <= m_UpperSize))) {
m_ResultProducer.doRunKeys(run);
m_CurrentSize += m_StepSize;
}
}
/**
* Gets the results for a specified run number. Different run
* numbers correspond to different randomizations of the data. Results
* produced should be sent to the current ResultListener
*
* @param run the run number to get results for.
* @exception Exception if a problem occurs while getting the results
*/
public void doRun(int run) throws Exception {
if (m_ResultProducer == null) {
throw new Exception("No ResultProducer set");
}
if (m_ResultListener == null) {
throw new Exception("No ResultListener set");
}
if (m_Instances == null) {
throw new Exception("No Instances set");
}
// Randomize on a copy of the original dataset
Instances runInstances = new Instances(m_Instances);
runInstances.randomize(new Random(run));
if (runInstances.classAttribute().isNominal()) {
runInstances.stratify(m_StepSize);
}
// Tell the resultproducer to send results to us
m_ResultProducer.setResultListener(this);
// For each subsample size
if (m_LowerSize == 0) {
m_CurrentSize = m_StepSize;
} else {
m_CurrentSize = m_LowerSize;
}
while (m_CurrentSize <= m_Instances.numInstances() &&
((m_UpperSize == -1) ||
(m_CurrentSize <= m_UpperSize))) {
m_ResultProducer.setInstances(new Instances(runInstances, 0,
m_CurrentSize));
m_ResultProducer.doRun(run);
m_CurrentSize += m_StepSize;
}
}
/**
* Prepare for the results to be received.
*
* @param rp the ResultProducer that will generate the results
* @exception Exception if an error occurs during preprocessing.
*/
public void preProcess(ResultProducer rp) throws Exception {
if (m_ResultListener == null) {
throw new Exception("No ResultListener set");
}
m_ResultListener.preProcess(this);
}
/**
* Prepare to generate results. The ResultProducer should call
* preProcess(this) on the ResultListener it is to send results to.
*
* @exception Exception if an error occurs during preprocessing.
*/
public void preProcess() throws Exception {
if (m_ResultProducer == null) {
throw new Exception("No ResultProducer set");
}
// Tell the resultproducer to send results to us
m_ResultProducer.setResultListener(this);
m_ResultProducer.preProcess();
}
/**
* When this method is called, it indicates that no more results
* will be sent that need to be grouped together in any way.
*
* @param rp the ResultProducer that generated the results
* @exception Exception if an error occurs
*/
public void postProcess(ResultProducer rp) throws Exception {
m_ResultListener.postProcess(this);
}
/**
* When this method is called, it indicates that no more requests to
* generate results for the current experiment will be sent. The
* ResultProducer should call preProcess(this) on the
* ResultListener it is to send results to.
*
* @exception Exception if an error occurs
*/
public void postProcess() throws Exception {
m_ResultProducer.postProcess();
}
/**
* Accepts results from a ResultProducer.
*
* @param rp the ResultProducer that generated the results
* @param key an array of Objects (Strings or Doubles) that uniquely
* identify a result for a given ResultProducer with given compatibilityState
* @param result the results stored in an array. The objects stored in
* the array may be Strings, Doubles, or null (for the missing value).
* @exception Exception if the result could not be accepted.
*/
public void acceptResult(ResultProducer rp, Object [] key, Object [] result)
throws Exception {
if (m_ResultProducer != rp) {
throw new Error("Unrecognized ResultProducer sending results!!");
}
// Add in current step as key field
Object [] newKey = new Object [key.length + 1];
System.arraycopy(key, 0, newKey, 0, key.length);
newKey[key.length] = new String("" + m_CurrentSize);
// Pass on to result listener
m_ResultListener.acceptResult(this, newKey, result);
}
/**
* Determines whether the results for a specified key must be
* generated.
*
* @param rp the ResultProducer wanting to generate the results
* @param key an array of Objects (Strings or Doubles) that uniquely
* identify a result for a given ResultProducer with given compatibilityState
* @return true if the result should be generated
* @exception Exception if it could not be determined if the result
* is needed.
*/
public boolean isResultRequired(ResultProducer rp, Object [] key)
throws Exception {
if (m_ResultProducer != rp) {
throw new Error("Unrecognized ResultProducer sending results!!");
}
// Add in current step as key field
Object [] newKey = new Object [key.length + 1];
System.arraycopy(key, 0, newKey, 0, key.length);
newKey[key.length] = new String("" + m_CurrentSize);
// Pass on request to result listener
return m_ResultListener.isResultRequired(this, newKey);
}
/**
* Gets the names of each of the columns produced for a single run.
*
* @return an array containing the name of each column
* @exception Exception if key names cannot be generated
*/
public String [] getKeyNames() throws Exception {
String [] keyNames = m_ResultProducer.getKeyNames();
String [] newKeyNames = new String [keyNames.length + 1];
System.arraycopy(keyNames, 0, newKeyNames, 0, keyNames.length);
// Think of a better name for this key field
newKeyNames[keyNames.length] = STEP_FIELD_NAME;
return newKeyNames;
}
/**
* Gets the data types of each of the columns produced for a single run.
* This method should really be static.
*
* @return an array containing objects of the type of each column. The
* objects should be Strings, or Doubles.
* @exception Exception if the key types could not be determined (perhaps
* because of a problem from a nested sub-resultproducer)
*/
public Object [] getKeyTypes() throws Exception {
Object [] keyTypes = m_ResultProducer.getKeyTypes();
Object [] newKeyTypes = new Object [keyTypes.length + 1];
System.arraycopy(keyTypes, 0, newKeyTypes, 0, keyTypes.length);
newKeyTypes[keyTypes.length] = "";
return newKeyTypes;
}
/**
* Gets the names of each of the columns produced for a single run.
* A new result field is added for the number of results used to
* produce each average.
* If only averages are being produced the names are not altered, if
* standard deviations are produced then "Dev_" and "Avg_" are prepended
* to each result deviation and average field respectively.
*
* @return an array containing the name of each column
* @exception Exception if the result names could not be determined (perhaps
* because of a problem from a nested sub-resultproducer)
*/
public String [] getResultNames() throws Exception {
return m_ResultProducer.getResultNames();
}
/**
* Gets the data types of each of the columns produced for a single run.
*
* @return an array containing objects of the type of each column. The
* objects should be Strings, or Doubles.
* @exception Exception if the result types could not be determined (perhaps
* because of a problem from a nested sub-resultproducer)
*/
public Object [] getResultTypes() throws Exception {
return m_ResultProducer.getResultTypes();
}
/**
* Gets a description of the internal settings of the result
* producer, sufficient for distinguishing a ResultProducer
* instance from another with different settings (ignoring
* those settings set through this interface). For example,
* a cross-validation ResultProducer may have a setting for the
* number of folds. For a given state, the results produced should
* be compatible. Typically if a ResultProducer is an OptionHandler,
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -