📄 classifier.java
字号:
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* Classifier.java
* Copyright (C) 2002 Mark Hall
*
*/
package weka.gui.beans;
import java.awt.BorderLayout;
import java.beans.EventSetDescriptor;
import java.io.Serializable;
import java.util.Enumeration;
import java.util.Hashtable;
import java.util.Vector;
import javax.swing.JPanel;
import weka.classifiers.rules.ZeroR;
import weka.core.Instances;
import weka.gui.Logger;
/**
* Bean that wraps around weka.classifiers
*
* @author <a href="mailto:mhall@cs.waikato.ac.nz">Mark Hall</a>
* @version $Revision$
* @since 1.0
* @see JPanel
* @see BeanCommon
* @see Visible
* @see WekaWrapper
* @see Serializable
* @see UserRequestAcceptor
* @see TrainingSetListener
* @see TestSetListener
*/
public class Classifier extends JPanel
implements BeanCommon, Visible,
WekaWrapper, EventConstraints,
Serializable, UserRequestAcceptor,
TrainingSetListener, TestSetListener,
InstanceListener {
protected BeanVisual m_visual =
new BeanVisual("Classifier",
BeanVisual.ICON_PATH+"DefaultClassifier.gif",
BeanVisual.ICON_PATH+"DefaultClassifier_animated.gif");
private static int IDLE = 0;
private static int BUILDING_MODEL = 1;
private static int CLASSIFYING = 2;
private int m_state = IDLE;
private Thread m_buildThread = null;
/**
* Global info for the wrapped classifier (if it exists).
*/
protected String m_globalInfo;
/**
* Objects talking to us
*/
private Hashtable m_listenees = new Hashtable();
/**
* Objects listening for batch classifier events
*/
private Vector m_batchClassifierListeners = new Vector();
/**
* Objects listening for incremental classifier events
*/
private Vector m_incrementalClassifierListeners = new Vector();
/**
* Objects listening for graph events
*/
private Vector m_graphListeners = new Vector();
/**
* Objects listening for text events
*/
private Vector m_textListeners = new Vector();
/**
* Holds training instances for batch training. Not transient because
* header is retained for validating any instance events that this
* classifier might be asked to predict in the future.
*/
private Instances m_trainingSet;
private transient Instances m_testingSet;
private weka.classifiers.Classifier m_Classifier = new ZeroR();
private IncrementalClassifierEvent m_ie =
new IncrementalClassifierEvent(this);
/**
* If the classifier is an incremental classifier, should we
* update it (ie train it on incoming instances). This makes it
* possible incrementally test on a separate stream of instances
* without updating the classifier, or mix batch training/testing
* with incremental training/testing
*/
private boolean m_updateIncrementalClassifier = true;
private transient Logger m_log = null;
/**
* Event to handle when processing incremental updates
*/
private InstanceEvent m_incrementalEvent;
private Double m_dummy = new Double(0.0);
/**
* Global info (if it exists) for the wrapped classifier
*
* @return the global info
*/
public String globalInfo() {
return m_globalInfo;
}
/**
* Creates a new <code>Classifier</code> instance.
*/
public Classifier() {
setLayout(new BorderLayout());
add(m_visual, BorderLayout.CENTER);
setClassifier(m_Classifier);
}
/**
* Set the classifier for this wrapper
*
* @param c a <code>weka.classifiers.Classifier</code> value
*/
public void setClassifier(weka.classifiers.Classifier c) {
boolean loadImages = true;
if (c.getClass().getName().
compareTo(m_Classifier.getClass().getName()) == 0) {
loadImages = false;
} else {
// classifier has changed so any batch training status is now
// invalid
m_trainingSet = null;
}
m_Classifier = c;
String classifierName = c.getClass().toString();
classifierName = classifierName.substring(classifierName.
lastIndexOf('.')+1,
classifierName.length());
if (loadImages) {
if (!m_visual.loadIcons(BeanVisual.ICON_PATH+classifierName+".gif",
BeanVisual.ICON_PATH+classifierName+"_animated.gif")) {
useDefaultVisual();
}
}
m_visual.setText(classifierName);
if (!(m_Classifier instanceof weka.classifiers.UpdateableClassifier) &&
(m_listenees.containsKey("instance"))) {
if (m_log != null) {
m_log.logMessage("WARNING : "+m_Classifier.getClass().getName()
+" is not an incremental classifier (Classifier)");
}
}
// get global info
m_globalInfo = KnowledgeFlow.getGlobalInfo(m_Classifier);
}
/**
* Returns true if this classifier has an incoming connection that is
* an instance stream
*
* @return true if has an incoming connection that is an instance stream
*/
public boolean hasIncomingStreamInstances() {
if (m_listenees.size() == 0) {
return false;
}
if (m_listenees.containsKey("instance")) {
return true;
}
return false;
}
/**
* Returns true if this classifier has an incoming connection that is
* a batch set of instances
*
* @return a <code>boolean</code> value
*/
public boolean hasIncomingBatchInstances() {
if (m_listenees.size() == 0) {
return false;
}
if (m_listenees.containsKey("trainingSet") ||
m_listenees.containsKey("testSet")) {
return true;
}
return false;
}
/**
* Get the classifier currently set for this wrapper
*
* @return a <code>weka.classifiers.Classifier</code> value
*/
public weka.classifiers.Classifier getClassifier() {
return m_Classifier;
}
/**
* Sets the algorithm (classifier) for this bean
*
* @param algorithm an <code>Object</code> value
* @exception IllegalArgumentException if an error occurs
*/
public void setWrappedAlgorithm(Object algorithm)
{
if (!(algorithm instanceof weka.classifiers.Classifier)) {
throw new IllegalArgumentException(algorithm.getClass()+" : incorrect "
+"type of algorithm (Classifier)");
}
setClassifier((weka.classifiers.Classifier)algorithm);
}
/**
* Returns the wrapped classifier
*
* @return an <code>Object</code> value
*/
public Object getWrappedAlgorithm() {
return getClassifier();
}
public boolean getUpdateIncrementalClassifier() {
return m_updateIncrementalClassifier;
}
public void setUpdateIncrementalClassifier(boolean update) {
m_updateIncrementalClassifier = update;
}
// public void acceptDataSet(DataSetEvent e) {
// // will wrap up data in a TrainingSetEvent and call acceptTrainingSet
// // then will do same for TestSetEvent
// acceptTrainingSet(new TrainingSetEvent(e.getSource(), e.getDataSet()));
// }
/**
* Accepts an instance for incremental processing.
*
* @param e an <code>InstanceEvent</code> value
*/
public void acceptInstance(InstanceEvent e) {
/* if (m_buildThread == null) {
System.err.println("Starting handler ");
startIncrementalHandler();
} */
// if (m_Classifier instanceof weka.classifiers.UpdateableClassifier) {
/* synchronized(m_dummy) {
m_state = BUILDING_MODEL;
m_incrementalEvent = e;
m_dummy.notifyAll();
}
try {
// if (m_state == BUILDING_MODEL && m_buildThread != null) {
block(true);
// }
} catch (Exception ex) {
return;
} */
m_incrementalEvent = e;
handleIncrementalEvent();
// }
}
/**
* Handles initializing and updating an incremental classifier
*/
private void handleIncrementalEvent() {
if (m_buildThread != null) {
String messg = "Classifier is currently batch training!";
if (m_log != null) {
m_log.logMessage(messg);
} else {
System.err.println(messg);
}
return;
}
if (m_incrementalEvent.getStatus() == InstanceEvent.FORMAT_AVAILABLE) {
// Instances dataset = m_incrementalEvent.getInstance().dataset();
Instances dataset = m_incrementalEvent.getStructure();
// default to the last column if no class is set
if (dataset.classIndex() < 0) {
// System.err.println("Classifier : setting class index...");
dataset.setClassIndex(dataset.numAttributes()-1);
}
try {
// initialize classifier if m_trainingSet is null
// otherwise assume that classifier has been pre-trained in batch
// mode, *if* headers match
if (m_trainingSet == null || (!dataset.equalHeaders(m_trainingSet))) {
if (!(m_Classifier instanceof
weka.classifiers.UpdateableClassifier)) {
if (m_log != null) {
String msg = (m_trainingSet == null)
? "ERROR : "+m_Classifier.getClass().getName()
+" has not been batch "
+"trained; can't process instance events."
: "ERROR : instance event's structure is different from "
+"the data that "
+ "was used to batch train this classifier; can't continue.";
m_log.logMessage(msg);
}
return;
}
if (m_trainingSet != null &&
(!dataset.equalHeaders(m_trainingSet))) {
if (m_log != null) {
m_log.logMessage("Warning : structure of instance events differ "
+"from data used in batch training this "
+"classifier. Resetting classifier...");
}
m_trainingSet = null;
}
if (m_trainingSet == null) {
// initialize the classifier if it hasn't been trained yet
m_trainingSet = new Instances(dataset, 0);
m_Classifier.buildClassifier(m_trainingSet);
}
}
} catch (Exception ex) {
ex.printStackTrace();
}
// Notify incremental classifier listeners of new batch
System.err.println("NOTIFYING NEW BATCH");
m_ie.setStructure(dataset);
m_ie.setClassifier(m_Classifier);
notifyIncrementalClassifierListeners(m_ie);
return;
} else {
if (m_trainingSet == null) {
// simply return. If the training set is still null after
// the first instance then the classifier must not be updateable
// and hasn't been previously batch trained - therefore we can't
// do anything meaningful
return;
}
}
try {
// test on this instance
int status = IncrementalClassifierEvent.WITHIN_BATCH;
/* if (m_incrementalEvent.getStatus() == InstanceEvent.FORMAT_AVAILABLE) {
status = IncrementalClassifierEvent.NEW_BATCH; */
/* } else */ if (m_incrementalEvent.getStatus() ==
InstanceEvent.BATCH_FINISHED) {
status = IncrementalClassifierEvent.BATCH_FINISHED;
}
m_ie.setStatus(status); m_ie.setClassifier(m_Classifier);
m_ie.setCurrentInstance(m_incrementalEvent.getInstance());
notifyIncrementalClassifierListeners(m_ie);
// now update on this instance (if class is not missing and classifier
// is updateable and user has specified that classifier is to be
// updated)
if (m_Classifier instanceof weka.classifiers.UpdateableClassifier &&
m_updateIncrementalClassifier == true &&
!(m_incrementalEvent.getInstance().
isMissing(m_incrementalEvent.getInstance().
dataset().classIndex()))) {
((weka.classifiers.UpdateableClassifier)m_Classifier).
updateClassifier(m_incrementalEvent.getInstance());
}
if (m_incrementalEvent.getStatus() ==
InstanceEvent.BATCH_FINISHED) {
if (m_textListeners.size() > 0) {
String modelString = m_Classifier.toString();
String titleString = m_Classifier.getClass().getName();
titleString = titleString.
substring(titleString.lastIndexOf('.') + 1,
titleString.length());
titleString = "( "+m_trainingSet.relationName() + ") " + titleString
+ " model";
TextEvent nt = new TextEvent(this,
modelString,
titleString);
notifyTextListeners(nt);
}
}
} catch (Exception ex) {
if (m_log != null) {
m_log.logMessage(ex.toString());
}
ex.printStackTrace();
}
}
/**
* Unused at present
*/
private void startIncrementalHandler() {
if (m_buildThread == null) {
m_buildThread = new Thread() {
public void run() {
while (true) {
synchronized(m_dummy) {
try {
m_dummy.wait();
} catch (InterruptedException ex) {
// m_buildThread = null;
// System.err.println("Here");
return;
}
}
Classifier.this.handleIncrementalEvent();
m_state = IDLE;
block(false);
}
}
};
m_buildThread.setPriority(Thread.MIN_PRIORITY);
m_buildThread.start();
// give thread a chance to start
try {
Thread.sleep(500);
} catch (InterruptedException ex) {
}
}
}
/**
* Accepts a training set and builds batch classifier
*
* @param e a <code>TrainingSetEvent</code> value
*/
public void acceptTrainingSet(final TrainingSetEvent e) {
if (e.isStructureOnly()) {
// no need to build a classifier, instead just generate a dummy
// BatchClassifierEvent in order to pass on instance structure to
// any listeners - eg. PredictionAppender can use it to determine
// the final structure of instances with predictions appended
BatchClassifierEvent ce =
new BatchClassifierEvent(this, m_Classifier,
new DataSetEvent(this, e.getTrainingSet()),
e.getSetNumber(), e.getMaxSetNumber());
notifyBatchClassifierListeners(ce);
return;
}
if (m_buildThread == null) {
try {
if (m_state == IDLE) {
synchronized (this) {
m_state = BUILDING_MODEL;
}
m_trainingSet = e.getTrainingSet();
final String oldText = m_visual.getText();
m_buildThread = new Thread() {
public void run() {
try {
if (m_trainingSet != null) {
if (m_trainingSet.classIndex() < 0) {
// assume last column is the class
m_trainingSet.setClassIndex(m_trainingSet.numAttributes()-1);
if (m_log != null) {
m_log.logMessage("Classifier : assuming last "
+"column is the class");
}
}
m_visual.setAnimated();
m_visual.setText("Building model...");
if (m_log != null) {
m_log.statusMessage("Classifier : building model...");
}
buildClassifier();
if (m_Classifier instanceof weka.core.Drawable &&
m_graphListeners.size() > 0) {
String grphString =
((weka.core.Drawable)m_Classifier).graph();
String grphTitle = m_Classifier.getClass().getName();
grphTitle = grphTitle.substring(grphTitle.
lastIndexOf('.')+1,
grphTitle.length());
grphTitle = "Set " + e.getSetNumber() + " ("
+e.getTrainingSet().relationName() + ") "
+grphTitle;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -