📄 removemisclassified.java
字号:
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* RemoveMisclassified.java
* Copyright (C) 2002 Richard Kirkby
*
*/
package weka.filters.unsupervised.instance;
import java.util.Enumeration;
import java.util.Vector;
import weka.classifiers.Classifier;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.Utils;
import weka.filters.Filter;
import weka.filters.UnsupervisedFilter;
/**
* A filter that removes instances which are incorrectly classified.
* Useful for removing outliers. <p>
*
* Valid filter-specific options are: <p>
*
* -W classifier string <br>
* Full class name of classifier to use, followed by scheme options. (required)<p>
*
* -C class index <br>
* Attribute on which misclassifications are based. If < 0 will use any current set
* class or default to the last attribute.
*
* -F number of folds <br>
* The number of folds to use for cross-validation cleansing.
* (<2 = no cross-validation - default)<p>
*
* -T threshold <br>
* Threshold for the max error when predicting numeric class.
* (Value should be >= 0, default = 0.1)<p>
*
* -I max iterations <br>
* The maximum number of cleansing iterations to perform.
* (<1 = until fully cleansed - default)<p>
*
* -V <br>
* Invert the match so that correctly classified instances are discarded.<p>
*
* @author Richard Kirkby (rkirkby@cs.waikato.ac.nz)
* @author Malcolm Ware (mfw4@cs.waikato.ac.nz)
* @version $Revision$
*/
public class RemoveMisclassified extends Filter implements UnsupervisedFilter, OptionHandler {
/** The classifier used to do the cleansing */
protected Classifier m_cleansingClassifier = new weka.classifiers.rules.ZeroR();
/** The attribute to treat as the class for purposes of cleansing. */
protected int m_classIndex = -1;
/** The number of cross validation folds to perform (<2 = no cross validation) */
protected int m_numOfCrossValidationFolds = 0;
/** The maximum number of cleansing iterations to perform (<1 = until fully cleansed) */
protected int m_numOfCleansingIterations = 0;
/** The threshold for deciding when a numeric value is correctly classified */
protected double m_numericClassifyThreshold = 0.1;
/** Whether to invert the match so the correctly classified instances are discarded */
protected boolean m_invertMatching = false;
/** Have we processed the first batch (i.e. training data)? */
protected boolean m_firstBatchFinished = false;
/**
* Sets the format of the input instances.
*
* @param instanceInfo an Instances object containing the input instance
* structure (any instances contained in the object are ignored - only the
* structure is required).
* @return true if the outputFormat may be collected immediately
* @exception Exception if the inputFormat can't be set successfully
*/
public boolean setInputFormat(Instances instanceInfo) throws Exception {
super.setInputFormat(instanceInfo);
setOutputFormat(instanceInfo);
m_firstBatchFinished = false;
return true;
}
/**
* Cleanses the data based on misclassifications when used training data.
*
* @param data the data to train with and cleanse
*/
private Instances cleanseTrain(Instances data) throws Exception {
Instance inst;
Instances buildSet = new Instances(data);
Instances temp = new Instances(data, data.numInstances());
Instances inverseSet = new Instances(data, data.numInstances());
int count = 0;
double ans;
int iterations = 0;
int classIndex = m_classIndex;
if (classIndex < 0) classIndex = data.classIndex();
if (classIndex < 0) classIndex = data.numAttributes()-1;
// loop until perfect
while(count != buildSet.numInstances()) {
// check if hit maximum number of iterations
iterations++;
if (m_numOfCleansingIterations > 0 && iterations > m_numOfCleansingIterations) break;
// build classifier
count = buildSet.numInstances();
buildSet.setClassIndex(classIndex);
m_cleansingClassifier.buildClassifier(buildSet);
temp = new Instances(buildSet, buildSet.numInstances());
// test on training data
for (int i = 0; i < buildSet.numInstances(); i++) {
inst = buildSet.instance(i);
ans = m_cleansingClassifier.classifyInstance(inst);
if (buildSet.classAttribute().isNumeric()) {
if (ans >= inst.classValue() - m_numericClassifyThreshold &&
ans <= inst.classValue() + m_numericClassifyThreshold) {
temp.add(inst);
} else if (m_invertMatching) {
inverseSet.add(inst);
}
}
else { //class is nominal
if (ans == inst.classValue()) {
temp.add(inst);
} else if (m_invertMatching) {
inverseSet.add(inst);
}
}
}
buildSet = temp;
}
if (m_invertMatching) {
inverseSet.setClassIndex(data.classIndex());
return inverseSet;
}
else {
buildSet.setClassIndex(data.classIndex());
return buildSet;
}
}
/**
* Cleanses the data based on misclassifications when performing cross-validation.
*
* @param data the data to train with and cleanse
*/
private Instances cleanseCross(Instances data) throws Exception {
Instance inst;
Instances crossSet = new Instances(data);
Instances temp = new Instances(data, data.numInstances());
Instances inverseSet = new Instances(data, data.numInstances());
int count = 0;
double ans;
int iterations = 0;
int classIndex = m_classIndex;
if (classIndex < 0) classIndex = data.classIndex();
if (classIndex < 0) classIndex = data.numAttributes()-1;
// loop until perfect
while (count != crossSet.numInstances() &&
crossSet.numInstances() >= m_numOfCrossValidationFolds) {
count = crossSet.numInstances();
// check if hit maximum number of iterations
iterations++;
if (m_numOfCleansingIterations > 0 && iterations > m_numOfCleansingIterations) break;
crossSet.setClassIndex(classIndex);
if (crossSet.classAttribute().isNominal()) {
crossSet.stratify(m_numOfCrossValidationFolds);
}
// do the folds
temp = new Instances(crossSet, crossSet.numInstances());
for (int fold = 0; fold < m_numOfCrossValidationFolds; fold++) {
Instances train = crossSet.trainCV(m_numOfCrossValidationFolds, fold);
m_cleansingClassifier.buildClassifier(train);
Instances test = crossSet.testCV(m_numOfCrossValidationFolds, fold);
//now test
for (int i = 0; i < test.numInstances(); i++) {
inst = test.instance(i);
ans = m_cleansingClassifier.classifyInstance(inst);
if (crossSet.classAttribute().isNumeric()) {
if (ans >= inst.classValue() - m_numericClassifyThreshold &&
ans <= inst.classValue() + m_numericClassifyThreshold) {
temp.add(inst);
} else if (m_invertMatching) {
inverseSet.add(inst);
}
}
else { //class is nominal
if (ans == inst.classValue()) {
temp.add(inst);
} else if (m_invertMatching) {
inverseSet.add(inst);
}
}
}
}
crossSet = temp;
}
if (m_invertMatching) {
inverseSet.setClassIndex(data.classIndex());
return inverseSet;
}
else {
crossSet.setClassIndex(data.classIndex());
return crossSet;
}
}
/**
* Input an instance for filtering.
*
* @param instance the input instance
* @return true if the filtered instance may now be
* collected with output().
* @exception NullPointerException if the input format has not been
* defined.
* @exception Exception if the input instance was not of the correct
* format or if there was a problem with the filtering.
*/
public boolean input(Instance instance) throws Exception {
if (inputFormatPeek() == null) {
throw new NullPointerException("No input instance format defined");
}
if (m_NewBatch) {
resetQueue();
m_NewBatch = false;
}
if (m_firstBatchFinished) {
push(instance);
return true;
} else {
bufferInput(instance);
return false;
}
}
/**
* Signify that this batch of input to the filter is finished.
*
* @return true if there are instances pending output
* @exception IllegalStateException if no input structure has been defined
*/
public boolean batchFinished() throws Exception {
if (getInputFormat() == null) {
throw new IllegalStateException("No input instance format defined");
}
if (!m_firstBatchFinished) {
Instances filtered;
if (m_numOfCrossValidationFolds < 2) {
filtered = cleanseTrain(getInputFormat());
} else {
filtered = cleanseCross(getInputFormat());
}
for (int i=0; i<filtered.numInstances(); i++) {
push(filtered.instance(i));
}
m_firstBatchFinished = true;
flushInput();
}
m_NewBatch = true;
return (numPendingOutput() != 0);
}
/**
* Returns an enumeration describing the available options.
*
* @return an enumeration of all the available options.
*/
public Enumeration listOptions() {
Vector newVector = new Vector(6);
newVector.addElement(new Option(
"\tFull class name of classifier to use, followed\n"
+ "\tby scheme options. (required)\n"
+ "\teg: \"weka.classifiers.bayes.NaiveBayes -D\"",
"W", 1, "-W <classifier specification>"));
newVector.addElement(new Option(
"\tAttribute on which misclassifications are based.\n"
+ "\tIf < 0 will use any current set class or default to the last attribute.",
"C", 1, "-C <class index>"));
newVector.addElement(new Option(
"\tThe number of folds to use for cross-validation cleansing.\n"
+"\t(<2 = no cross-validation - default).",
"F", 1, "-F <number of folds>"));
newVector.addElement(new Option(
"\tThreshold for the max error when predicting numeric class.\n"
+"\t(Value should be >= 0, default = 0.1).",
"T", 1, "-T <threshold>"));
newVector.addElement(new Option(
"\tThe maximum number of cleansing iterations to perform.\n"
+"\t(<1 = until fully cleansed - default)",
"I", 1,"-I"));
newVector.addElement(new Option(
"\tInvert the match so that correctly classified instances are discarded.\n",
"V", 0,"-V"));
return newVector.elements();
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -