📄 discretize.java
字号:
*
* @return the number of bins.
*/
public int getBins() {
return m_NumBins;
}
/**
* Sets the number of bins to divide each selected numeric attribute into
*
* @param numBins the number of bins
*/
public void setBins(int numBins) {
m_NumBins = numBins;
}
/**
* Returns the tip text for this property
*
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String invertSelectionTipText() {
return "Set attribute selection mode. If false, only selected"
+ " (numeric) attributes in the range will be discretized; if"
+ " true, only non-selected attributes will be discretized.";
}
/**
* Gets whether the supplied columns are to be removed or kept
*
* @return true if the supplied columns will be kept
*/
public boolean getInvertSelection() {
return m_DiscretizeCols.getInvert();
}
/**
* Sets whether selected columns should be removed or kept. If true the
* selected columns are kept and unselected columns are deleted. If false
* selected columns are deleted and unselected columns are kept.
*
* @param invert the new invert setting
*/
public void setInvertSelection(boolean invert) {
m_DiscretizeCols.setInvert(invert);
}
/**
* Returns the tip text for this property
*
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String attributeIndicesTipText() {
return "Specify range of attributes to act on."
+ " This is a comma separated list of attribute indices, with"
+ " \"first\" and \"last\" valid values. Specify an inclusive"
+ " range with \"-\". E.g: \"first-3,5,6-10,last\".";
}
/**
* Gets the current range selection
*
* @return a string containing a comma separated list of ranges
*/
public String getAttributeIndices() {
return m_DiscretizeCols.getRanges();
}
/**
* Sets which attributes are to be Discretized (only numeric
* attributes among the selection will be Discretized).
*
* @param rangeList a string representing the list of attributes. Since
* the string will typically come from a user, attributes are indexed from
* 1. <br>
* eg: first-3,5,6-last
* @exception IllegalArgumentException if an invalid range list is supplied
*/
public void setAttributeIndices(String rangeList) {
m_DiscretizeCols.setRanges(rangeList);
}
/**
* Sets which attributes are to be Discretized (only numeric
* attributes among the selection will be Discretized).
*
* @param attributes an array containing indexes of attributes to Discretize.
* Since the array will typically come from a program, attributes are indexed
* from 0.
* @exception IllegalArgumentException if an invalid set of ranges
* is supplied
*/
public void setAttributeIndicesArray(int [] attributes) {
setAttributeIndices(Range.indicesToRangeList(attributes));
}
/**
* Gets the cut points for an attribute
*
* @param the index (from 0) of the attribute to get the cut points of
* @return an array containing the cutpoints (or null if the
* attribute requested has been discretized into only one interval.)
*/
public double [] getCutPoints(int attributeIndex) {
if (m_CutPoints == null) {
return null;
}
return m_CutPoints[attributeIndex];
}
/** Generate the cutpoints for each attribute */
protected void calculateCutPoints() {
Instances copy = null;
m_CutPoints = new double [getInputFormat().numAttributes()] [];
for(int i = getInputFormat().numAttributes() - 1; i >= 0; i--) {
if ((m_DiscretizeCols.isInRange(i)) &&
(getInputFormat().attribute(i).isNumeric()) &&
(getInputFormat().classIndex() != i)) {
if (m_FindNumBins) {
findNumBins(i);
} else if (!m_UseEqualFrequency) {
calculateCutPointsByEqualWidthBinning(i);
} else {
calculateCutPointsByEqualFrequencyBinning(i);
}
}
}
}
/**
* Set cutpoints for a single attribute.
*
* @param index the index of the attribute to set cutpoints for
*/
protected void calculateCutPointsByEqualWidthBinning(int index) {
// Scan for max and min values
double max = 0, min = 1, currentVal;
Instance currentInstance;
for(int i = 0; i < getInputFormat().numInstances(); i++) {
currentInstance = getInputFormat().instance(i);
if (!currentInstance.isMissing(index)) {
currentVal = currentInstance.value(index);
if (max < min) {
max = min = currentVal;
}
if (currentVal > max) {
max = currentVal;
}
if (currentVal < min) {
min = currentVal;
}
}
}
double binWidth = (max - min) / m_NumBins;
double [] cutPoints = null;
if ((m_NumBins > 1) && (binWidth > 0)) {
cutPoints = new double [m_NumBins - 1];
for(int i = 1; i < m_NumBins; i++) {
cutPoints[i - 1] = min + binWidth * i;
}
}
m_CutPoints[index] = cutPoints;
}
/**
* Set cutpoints for a single attribute.
*
* @param index the index of the attribute to set cutpoints for
*/
protected void calculateCutPointsByEqualFrequencyBinning(int index) {
// Copy data so that it can be sorted
Instances data = new Instances(getInputFormat());
// Sort input data
data.sort(index);
// Compute weight of instances without missing values
double sumOfWeights = 0;
for (int i = 0; i < data.numInstances(); i++) {
if (data.instance(i).isMissing(index)) {
break;
} else {
sumOfWeights += data.instance(i).weight();
}
}
double freq;
double[] cutPoints = new double[m_NumBins - 1];
if (getDesiredWeightOfInstancesPerInterval() > 0) {
freq = getDesiredWeightOfInstancesPerInterval();
cutPoints = new double[(int)(sumOfWeights / freq)];
} else {
freq = sumOfWeights / m_NumBins;
cutPoints = new double[m_NumBins - 1];
}
// Compute break points
double counter = 0, last = 0;
int cpindex = 0, lastIndex = -1;
for (int i = 0; i < data.numInstances() - 1; i++) {
// Stop if value missing
if (data.instance(i).isMissing(index)) {
break;
}
counter += data.instance(i).weight();
sumOfWeights -= data.instance(i).weight();
// Do we have a potential breakpoint?
if (data.instance(i).value(index) <
data.instance(i + 1).value(index)) {
// Have we passed the ideal size?
if (counter >= freq) {
// Is this break point worse than the last one?
if (((freq - last) < (counter - freq)) && (lastIndex != -1)) {
cutPoints[cpindex] = (data.instance(lastIndex).value(index) +
data.instance(lastIndex + 1).value(index)) / 2;
counter -= last;
last = counter;
lastIndex = i;
} else {
cutPoints[cpindex] = (data.instance(i).value(index) +
data.instance(i + 1).value(index)) / 2;
counter = 0;
last = 0;
lastIndex = -1;
}
cpindex++;
freq = (sumOfWeights + counter) / ((cutPoints.length + 1) - cpindex);
} else {
lastIndex = i;
last = counter;
}
}
}
// Check whether there was another possibility for a cut point
if ((cpindex < cutPoints.length) && (lastIndex != -1)) {
cutPoints[cpindex] = (data.instance(lastIndex).value(index) +
data.instance(lastIndex + 1).value(index)) / 2;
cpindex++;
}
// Did we find any cutpoints?
if (cpindex == 0) {
m_CutPoints[index] = null;
} else {
double[] cp = new double[cpindex];
for (int i = 0; i < cpindex; i++) {
cp[i] = cutPoints[i];
}
m_CutPoints[index] = cp;
}
}
/**
* Optimizes the number of bins using leave-one-out cross-validation.
*
* @param index the attribute index
*/
protected void findNumBins(int index) {
double min = Double.MAX_VALUE, max = -Double.MIN_VALUE, binWidth = 0,
entropy, bestEntropy = Double.MAX_VALUE, currentVal;
double[] distribution;
int bestNumBins = 1;
Instance currentInstance;
// Find minimum and maximum
for (int i = 0; i < getInputFormat().numInstances(); i++) {
currentInstance = getInputFormat().instance(i);
if (!currentInstance.isMissing(index)) {
currentVal = currentInstance.value(index);
if (currentVal > max) {
max = currentVal;
}
if (currentVal < min) {
min = currentVal;
}
}
}
// Find best number of bins
for (int i = 0; i < m_NumBins; i++) {
distribution = new double[i + 1];
binWidth = (max - min) / (i + 1);
// Compute distribution
for (int j = 0; j < getInputFormat().numInstances(); j++) {
currentInstance = getInputFormat().instance(j);
if (!currentInstance.isMissing(index)) {
for (int k = 0; k < i + 1; k++) {
if (currentInstance.value(index) <=
(min + (((double)k + 1) * binWidth))) {
distribution[k] += currentInstance.weight();
break;
}
}
}
}
// Compute cross-validated entropy
entropy = 0;
for (int k = 0; k < i + 1; k++) {
if (distribution[k] < 2) {
entropy = Double.MAX_VALUE;
break;
}
entropy -= distribution[k] * Math.log((distribution[k] - 1) /
binWidth);
}
// Best entropy so far?
if (entropy < bestEntropy) {
bestEntropy = entropy;
bestNumBins = i + 1;
}
}
// Compute cut points
double [] cutPoints = null;
if ((bestNumBins > 1) && (binWidth > 0)) {
cutPoints = new double [bestNumBins - 1];
for(int i = 1; i < bestNumBins; i++) {
cutPoints[i - 1] = min + binWidth * i;
}
}
m_CutPoints[index] = cutPoints;
}
/**
* Set the output format. Takes the currently defined cutpoints and
* m_InputFormat and calls setOutputFormat(Instances) appropriately.
*/
protected void setOutputFormat() {
if (m_CutPoints == null) {
setOutputFormat(null);
return;
}
FastVector attributes = new FastVector(getInputFormat().numAttributes());
int classIndex = getInputFormat().classIndex();
for(int i = 0; i < getInputFormat().numAttributes(); i++) {
if ((m_DiscretizeCols.isInRange(i))
&& (getInputFormat().attribute(i).isNumeric())
&& (getInputFormat().classIndex() != i)) {
if (!m_MakeBinary) {
FastVector attribValues = new FastVector(1);
if (m_CutPoints[i] == null) {
attribValues.addElement("'All'");
} else {
for(int j = 0; j <= m_CutPoints[i].length; j++) {
if (j == 0) {
attribValues.addElement("'(-inf-"
+ Utils.doubleToString(m_CutPoints[i][j], 6) + "]'");
} else if (j == m_CutPoints[i].length) {
attribValues.addElement("'("
+ Utils.doubleToString(m_CutPoints[i][j - 1], 6)
+ "-inf)'");
} else {
attribValues.addElement("'("
+ Utils.doubleToString(m_CutPoints[i][j - 1], 6) + "-"
+ Utils.doubleToString(m_CutPoints[i][j], 6) + "]'");
}
}
}
attributes.addElement(new Attribute(getInputFormat().
attribute(i).name(),
attribValues));
} else {
if (m_CutPoints[i] == null) {
FastVector attribValues = new FastVector(1);
attribValues.addElement("'All'");
attributes.addElement(new Attribute(getInputFormat().
attribute(i).name(),
attribValues));
} else {
if (i < getInputFormat().classIndex()) {
classIndex += m_CutPoints[i].length - 1;
}
for(int j = 0; j < m_CutPoints[i].length; j++) {
FastVector attribValues = new FastVector(2);
attribValues.addElement("'(-inf-"
+ Utils.doubleToString(m_CutPoints[i][j], 6) + "]'");
attribValues.addElement("'("
+ Utils.doubleToString(m_CutPoints[i][j], 6) + "-inf)'");
attributes.addElement(new Attribute(getInputFormat().
attribute(i).name(),
attribValues));
}
}
}
} else {
attributes.addElement(getInputFormat().attribute(i).copy());
}
}
Instances outputFormat =
new Instances(getInputFormat().relationName(), attributes, 0);
outputFormat.setClassIndex(classIndex);
setOutputFormat(outputFormat);
}
/**
* Convert a single instance over. The converted instance is added to
* the end of the output queue.
*
* @param instance the instance to convert
*/
protected void convertInstance(Instance instance) {
int index = 0;
double [] vals = new double [outputFormatPeek().numAttributes()];
// Copy and convert the values
for(int i = 0; i < getInputFormat().numAttributes(); i++) {
if (m_DiscretizeCols.isInRange(i) &&
getInputFormat().attribute(i).isNumeric() &&
(getInputFormat().classIndex() != i)) {
int j;
double currentVal = instance.value(i);
if (m_CutPoints[i] == null) {
if (instance.isMissing(i)) {
vals[index] = Instance.missingValue();
} else {
vals[index] = 0;
}
index++;
} else {
if (!m_MakeBinary) {
if (instance.isMissing(i)) {
vals[index] = Instance.missingValue();
} else {
for (j = 0; j < m_CutPoints[i].length; j++) {
if (currentVal <= m_CutPoints[i][j]) {
break;
}
}
vals[index] = j;
}
index++;
} else {
for (j = 0; j < m_CutPoints[i].length; j++) {
if (instance.isMissing(i)) {
vals[index] = Instance.missingValue();
} else if (currentVal <= m_CutPoints[i][j]) {
vals[index] = 0;
} else {
vals[index] = 1;
}
index++;
}
}
}
} else {
vals[index] = instance.value(i);
index++;
}
}
Instance inst = null;
if (instance instanceof SparseInstance) {
inst = new SparseInstance(instance.weight(), vals);
} else {
inst = new Instance(instance.weight(), vals);
}
copyStringValues(inst, false, instance.dataset(), getInputStringIndex(),
getOutputFormat(), getOutputStringIndex());
inst.setDataset(getOutputFormat());
push(inst);
}
/**
* Main method for testing this class.
*
* @param argv should contain arguments to the filter: use -h for help
*/
public static void main(String [] argv) {
try {
if (Utils.getFlag('b', argv)) {
Filter.batchFilterFile(new Discretize(), argv);
} else {
Filter.filterFile(new Discretize(), argv);
}
} catch (Exception ex) {
ex.printStackTrace();
System.out.println(ex.getMessage());
}
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -