📄 discretize.java
字号:
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* Discretize.java
* Copyright (C) 1999 Eibe Frank,Len Trigg
*
*/
package weka.filters.unsupervised.attribute;
import java.util.Enumeration;
import java.util.Vector;
import weka.core.Attribute;
import weka.core.FastVector;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.Range;
import weka.core.SparseInstance;
import weka.core.Utils;
import weka.core.WeightedInstancesHandler;
import weka.filters.Filter;
import weka.filters.UnsupervisedFilter;
/**
* An instance filter that discretizes a range of numeric attributes in
* the dataset into nominal attributes. Discretization is by simple binning.
* Skips the class attribute if set.<p>
*
* Valid filter-specific options are: <p>
*
* -B num <br>
* Specifies the (maximum) number of bins to divide numeric attributes into.
* Default = 10.<p>
*
* -M num <br>
* Specifies the desired weight of instances per bin for equal-frequency
* binning. If this is set to a positive number then the -B option will be
* ignored. Default = -1.<p>
*
* -F <br>
* Use equal-frequency instead of equal-width discretization if
* class-based discretisation is turned off.<p>
*
* -O <br>
* Optimize the number of bins using a leave-one-out estimate of the
* entropy (for equal-width binning). If this is set then the -B option
* will be ignored.<p>
*
* -R col1,col2-col4,... <br>
* Specifies list of columns to Discretize. First
* and last are valid indexes. (default: first-last) <p>
*
* -V <br>
* Invert matching sense.<p>
*
* -D <br>
* Make binary nominal attributes. <p>
*
* @author Len Trigg (trigg@cs.waikato.ac.nz)
* @author Eibe Frank (eibe@cs.waikato.ac.nz)
* @version $Revision$
*/
public class Discretize extends PotentialClassIgnorer
implements UnsupervisedFilter, OptionHandler, WeightedInstancesHandler {
/** Stores which columns to Discretize */
protected Range m_DiscretizeCols = new Range();
/** The number of bins to divide the attribute into */
protected int m_NumBins = 10;
/** The desired weight of instances per bin */
protected double m_DesiredWeightOfInstancesPerInterval = -1;
/** Store the current cutpoints */
protected double [][] m_CutPoints = null;
/** Output binary attributes for discretized attributes. */
protected boolean m_MakeBinary = false;
/** Find the number of bins using cross-validated entropy. */
protected boolean m_FindNumBins = false;
/** Use equal-frequency binning if unsupervised discretization turned on */
protected boolean m_UseEqualFrequency = false;
/** The default columns to discretize */
protected String m_DefaultCols;
/** Constructor - initialises the filter */
public Discretize() {
m_DefaultCols = "first-last";
setAttributeIndices("first-last");
}
/** Another constructor */
public Discretize(String cols) {
m_DefaultCols = cols;
setAttributeIndices(cols);
}
/**
* Gets an enumeration describing the available options.
*
* @return an enumeration of all the available options.
*/
public Enumeration listOptions() {
Vector newVector = new Vector(7);
newVector.addElement(new Option(
"\tSpecifies the (maximum) number of bins to divide numeric"
+ " attributes into.\n"
+ "\t(default = 10)",
"B", 1, "-B <num>"));
newVector.addElement(new Option(
"\tSpecifies the desired weight of instances per bin for\n"
+ "\tequal-frequency binning. If this is set to a positive\n"
+ "\tnumber then the -B option will be ignored.\n"
+ "\t(default = -1)",
"M", 1, "-M <num>"));
newVector.addElement(new Option(
"\tUse equal-frequency instead of equal-width discretization.",
"F", 0, "-F"));
newVector.addElement(new Option(
"\tOptimize number of bins using leave-one-out estimate\n"+
"\tof estimated entropy (for equal-width discretization).\n"+
"\tIf this is set then the -B option will be ignored.",
"O", 0, "-O"));
newVector.addElement(new Option(
"\tSpecifies list of columns to Discretize. First"
+ " and last are valid indexes.\n"
+ "\t(default: first-last)",
"R", 1, "-R <col1,col2-col4,...>"));
newVector.addElement(new Option(
"\tInvert matching sense of column indexes.",
"V", 0, "-V"));
newVector.addElement(new Option(
"\tOutput binary attributes for discretized attributes.",
"D", 0, "-D"));
return newVector.elements();
}
/**
* Parses the options for this object. Valid options are: <p>
*
* -B num <br>
* Specifies the (maximum) number of bins to divide numeric attributes into.
* Default = 10.<p>
*
* -M num <br>
* Specifies the desired weight of instances per bin for equal-frequency
* binning. If this is set to a positive number then the -B option will be
* ignored. Default = -1.<p>
*
* -F <br>
* Use equal-frequency instead of equal-width discretization if
* class-based discretisation is turned off.<p>
*
* -O <br>
* Optimize the number of bins using a leave-one-out estimate of the
* entropy (for equal-width binning). If this is set then the -B
* option will be ignored.<p>
*
* -R col1,col2-col4,... <br>
* Specifies list of columns to Discretize. First
* and last are valid indexes. (default none) <p>
*
* -V <br>
* Invert matching sense.<p>
*
* -D <br>
* Make binary nominal attributes. <p>
*
* @param options the list of options as an array of strings
* @exception Exception if an option is not supported
*/
public void setOptions(String[] options) throws Exception {
setMakeBinary(Utils.getFlag('D', options));
setUseEqualFrequency(Utils.getFlag('F', options));
setFindNumBins(Utils.getFlag('O', options));
setInvertSelection(Utils.getFlag('V', options));
String weight = Utils.getOption('M', options);
if (weight.length() != 0) {
setDesiredWeightOfInstancesPerInterval((new Double(weight)).doubleValue());
} else {
setDesiredWeightOfInstancesPerInterval(-1);
}
String numBins = Utils.getOption('B', options);
if (numBins.length() != 0) {
setBins(Integer.parseInt(numBins));
} else {
setBins(10);
}
String convertList = Utils.getOption('R', options);
if (convertList.length() != 0) {
setAttributeIndices(convertList);
} else {
setAttributeIndices(m_DefaultCols);
}
if (getInputFormat() != null) {
setInputFormat(getInputFormat());
}
}
/**
* Gets the current settings of the filter.
*
* @return an array of strings suitable for passing to setOptions
*/
public String [] getOptions() {
String [] options = new String [10];
int current = 0;
if (getMakeBinary()) {
options[current++] = "-D";
}
if (getUseEqualFrequency()) {
options[current++] = "-F";
}
if (getFindNumBins()) {
options[current++] = "-O";
}
if (getInvertSelection()) {
options[current++] = "-V";
}
options[current++] = "-B"; options[current++] = "" + getBins();
options[current++] = "-M";
options[current++] = "" + getDesiredWeightOfInstancesPerInterval();
if (!getAttributeIndices().equals("")) {
options[current++] = "-R"; options[current++] = getAttributeIndices();
}
while (current < options.length) {
options[current++] = "";
}
return options;
}
/**
* Sets the format of the input instances.
*
* @param instanceInfo an Instances object containing the input instance
* structure (any instances contained in the object are ignored - only the
* structure is required).
* @return true if the outputFormat may be collected immediately
* @exception Exception if the input format can't be set successfully
*/
public boolean setInputFormat(Instances instanceInfo) throws Exception {
if (m_MakeBinary && m_IgnoreClass) {
throw new IllegalArgumentException("Can't ignore class when " +
"changing the number of attributes!");
}
super.setInputFormat(instanceInfo);
m_DiscretizeCols.setUpper(instanceInfo.numAttributes() - 1);
m_CutPoints = null;
if (getFindNumBins() && getUseEqualFrequency()) {
throw new IllegalArgumentException("Bin number optimization in conjunction "+
"with equal-frequency binning not implemented.");
}
// If we implement loading cutfiles, then load
//them here and set the output format
return false;
}
/**
* Input an instance for filtering. Ordinarily the instance is processed
* and made available for output immediately. Some filters require all
* instances be read before producing output.
*
* @param instance the input instance
* @return true if the filtered instance may now be
* collected with output().
* @exception IllegalStateException if no input format has been defined.
*/
public boolean input(Instance instance) {
if (getInputFormat() == null) {
throw new IllegalStateException("No input instance format defined");
}
if (m_NewBatch) {
resetQueue();
m_NewBatch = false;
}
if (m_CutPoints != null) {
convertInstance(instance);
return true;
}
bufferInput(instance);
return false;
}
/**
* Signifies that this batch of input to the filter is finished. If the
* filter requires all instances prior to filtering, output() may now
* be called to retrieve the filtered instances.
*
* @return true if there are instances pending output
* @exception IllegalStateException if no input structure has been defined
*/
public boolean batchFinished() {
if (getInputFormat() == null) {
throw new IllegalStateException("No input instance format defined");
}
if (m_CutPoints == null) {
calculateCutPoints();
setOutputFormat();
// If we implement saving cutfiles, save the cuts here
// Convert pending input instances
for(int i = 0; i < getInputFormat().numInstances(); i++) {
convertInstance(getInputFormat().instance(i));
}
}
flushInput();
m_NewBatch = true;
return (numPendingOutput() != 0);
}
/**
* Returns a string describing this filter
*
* @return a description of the filter suitable for
* displaying in the explorer/experimenter gui
*/
public String globalInfo() {
return "An instance filter that discretizes a range of numeric"
+ " attributes in the dataset into nominal attributes."
+ " Discretization is by simple binning. Skips the class"
+ " attribute if set.";
}
/**
* Returns the tip text for this property
*
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String findNumBinsTipText() {
return "Optimize number of equal-width bins using leave-one-out. Doesn't " +
"work for equal-frequency binning";
}
/**
* Get the value of FindNumBins.
*
* @return Value of FindNumBins.
*/
public boolean getFindNumBins() {
return m_FindNumBins;
}
/**
* Set the value of FindNumBins.
*
* @param newFindNumBins Value to assign to FindNumBins.
*/
public void setFindNumBins(boolean newFindNumBins) {
m_FindNumBins = newFindNumBins;
}
/**
* Returns the tip text for this property
*
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String makeBinaryTipText() {
return "Make resulting attributes binary.";
}
/**
* Gets whether binary attributes should be made for discretized ones.
*
* @return true if attributes will be binarized
*/
public boolean getMakeBinary() {
return m_MakeBinary;
}
/**
* Sets whether binary attributes should be made for discretized ones.
*
* @param makeBinary if binary attributes are to be made
*/
public void setMakeBinary(boolean makeBinary) {
m_MakeBinary = makeBinary;
}
/**
* Returns the tip text for this property
*
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String desiredWeightOfInstancesPerIntervalTipText() {
return "Sets the desired weight of instances per interval for " +
"equal-frequency binning.";
}
/**
* Get the DesiredWeightOfInstancesPerInterval value.
* @return the DesiredWeightOfInstancesPerInterval value.
*/
public double getDesiredWeightOfInstancesPerInterval() {
return m_DesiredWeightOfInstancesPerInterval;
}
/**
* Set the DesiredWeightOfInstancesPerInterval value.
* @param newDesiredNumber The new DesiredNumber value.
*/
public void setDesiredWeightOfInstancesPerInterval(double newDesiredNumber) {
m_DesiredWeightOfInstancesPerInterval = newDesiredNumber;
}
/**
* Returns the tip text for this property
*
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String useEqualFrequencyTipText() {
return "If set to true, equal-frequency binning will be used instead of" +
" equal-width binning.";
}
/**
* Get the value of UseEqualFrequency.
*
* @return Value of UseEqualFrequency.
*/
public boolean getUseEqualFrequency() {
return m_UseEqualFrequency;
}
/**
* Set the value of UseEqualFrequency.
*
* @param newUseEqualFrequency Value to assign to UseEqualFrequency.
*/
public void setUseEqualFrequency(boolean newUseEqualFrequency) {
m_UseEqualFrequency = newUseEqualFrequency;
}
/**
* Returns the tip text for this property
*
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String binsTipText() {
return "Number of bins.";
}
/**
* Gets the number of bins numeric attributes will be divided into
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -