📄 spreadsubsample.java
字号:
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* SpreadSubsample.java
* Copyright (C) 2002 University of Waikato
*
*/
package weka.filters.supervised.instance;
import weka.filters.*;
import java.util.Enumeration;
import java.util.Hashtable;
import java.util.Random;
import java.util.Vector;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.Utils;
import weka.core.UnsupportedClassTypeException;
/**
* Produces a random subsample of a dataset. The original dataset must
* fit entirely in memory. This filter allows you to specify the maximum
* "spread" between the rarest and most common class. For example, you may
* specify that there be at most a 2:1 difference in class frequencies.
* When used in batch mode, subsequent batches are
* <b>not</b> resampled.
*
* Valid options are:<p>
*
* -S num <br>
* Specify the random number seed (default 1).<p>
*
* -M num <br>
* The maximum class distribution spread. <br>
* 0 = no maximum spread, 1 = uniform distribution, 10 = allow at most a
* 10:1 ratio between the classes (default 0)
* <p>
*
* -X num <br>
* The maximum count for any class value. <br>
* (default 0 = unlimited)
* <p>
*
* -W <br>
* Adjust weights so that total weight per class is maintained. Individual
* instance weighting is not preserved. (default no weights adjustment)
* <p>
*
* @author Stuart Inglis (stuart@reeltwo.com)
* @version $Revision$
**/
public class SpreadSubsample extends Filter implements SupervisedFilter,
OptionHandler {
/** The random number generator seed */
private int m_RandomSeed = 1;
/** The maximum count of any class */
private int m_MaxCount;
/** True if the first batch has been done */
private boolean m_FirstBatchDone = false;
/** True if the first batch has been done */
private double m_DistributionSpread = 0;
/**
* True if instance weights will be adjusted to maintain
* total weight per class.
*/
private boolean m_AdjustWeights = false;
/**
* Returns a string describing this filter
*
* @return a description of the filter suitable for
* displaying in the explorer/experimenter gui
*/
public String globalInfo() {
return "Produces a random subsample of a dataset. The original dataset must "
+ "fit entirely in memory. This filter allows you to specify the maximum "
+ "\"spread\" between the rarest and most common class. For example, you may "
+ "specify that there be at most a 2:1 difference in class frequencies. "
+ "When used in batch mode, subsequent batches are NOT resampled.";
}
/**
* Returns the tip text for this property
*
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String adjustWeightsTipText() {
return "Wether instance weights will be adjusted to maintain total weight per "
+ "class.";
}
/**
* Returns true if instance weights will be adjusted to maintain
* total weight per class.
*
* @return true if instance weights will be adjusted to maintain
* total weight per class.
*/
public boolean getAdjustWeights() {
return m_AdjustWeights;
}
/**
* Sets whether the instance weights will be adjusted to maintain
* total weight per class.
*
* @param newAdjustWeights
*/
public void setAdjustWeights(boolean newAdjustWeights) {
m_AdjustWeights = newAdjustWeights;
}
/**
* Returns an enumeration describing the available options.
*
* @return an enumeration of all the available options.
*/
public Enumeration listOptions() {
Vector newVector = new Vector(4);
newVector.addElement(new Option(
"\tSpecify the random number seed (default 1)",
"S", 1, "-S <num>"));
newVector.addElement(new Option(
"\tThe maximum class distribution spread.\n"
+"\t0 = no maximum spread, 1 = uniform distribution, 10 = allow at most\n"
+"\ta 10:1 ratio between the classes (default 0)",
"M", 1, "-M <num>"));
newVector.addElement(new Option(
"\tAdjust weights so that total weight per class is maintained.\n"
+"\tIndividual instance weighting is not preserved. (default no\n"
+"\tweights adjustment",
"W", 0, "-W"));
newVector.addElement(new Option(
"\tThe maximum count for any class value (default 0 = unlimited).\n",
"X", 0, "-X <num>"));
return newVector.elements();
}
/**
* Parses a list of options for this object. Valid options are:<p>
*
* -S num <br>
* Specify the random number seed (default 1).<p>
*
* -M num <br>
* The maximum class distribution spread. <br>
* 0 = no maximum spread, 1 = uniform distribution, 10 = allow at most a
* 10:1 ratio between the classes (default 0)
* <p>
*
* -X num <br>
* The maximum count for any class value. <br>
* (default 0 = unlimited)
* <p>
*
* -W <br>
* Adjust weights so that total weight per class is maintained. Individual
* instance weighting is not preserved. (default no weights adjustment)
* <p>
*
* @param options the list of options as an array of strings
* @exception Exception if an option is not supported
*/
public void setOptions(String[] options) throws Exception {
String seedString = Utils.getOption('S', options);
if (seedString.length() != 0) {
setRandomSeed(Integer.parseInt(seedString));
} else {
setRandomSeed(1);
}
String maxString = Utils.getOption('M', options);
if (maxString.length() != 0) {
setDistributionSpread(Double.valueOf(maxString).doubleValue());
} else {
setDistributionSpread(0);
}
String maxCount = Utils.getOption('X', options);
if (maxCount.length() != 0) {
setMaxCount(Double.valueOf(maxCount).doubleValue());
} else {
setMaxCount(0);
}
setAdjustWeights(Utils.getFlag('W', options));
if (getInputFormat() != null) {
setInputFormat(getInputFormat());
}
}
/**
* Gets the current settings of the filter.
*
* @return an array of strings suitable for passing to setOptions
*/
public String [] getOptions() {
String [] options = new String [7];
int current = 0;
options[current++] = "-M";
options[current++] = "" + getDistributionSpread();
options[current++] = "-X";
options[current++] = "" + getMaxCount();
options[current++] = "-S";
options[current++] = "" + getRandomSeed();
if (getAdjustWeights()) {
options[current++] = "-W";
}
while (current < options.length) {
options[current++] = "";
}
return options;
}
/**
* Returns the tip text for this property
*
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String distributionSpreadTipText() {
return "The maximum class distribution spread. "
+ "(0 = no maximum spread, 1 = uniform distribution, 10 = allow at most a "
+ "10:1 ratio between the classes).";
}
/**
* Sets the value for the distribution spread
*
* @param spread the new distribution spread
*/
public void setDistributionSpread(double spread) {
m_DistributionSpread = spread;
}
/**
* Gets the value for the distribution spread
*
* @return the distribution spread
*/
public double getDistributionSpread() {
return m_DistributionSpread;
}
/**
* Returns the tip text for this property
*
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String maxCountTipText() {
return "The maximum count for any class value (0 = unlimited).";
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -