📄 discretize.java
字号:
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* Discretize.java
* Copyright (C) 1999 Eibe Frank,Len Trigg
*
*/
package weka.filters.supervised.attribute;
import java.util.Enumeration;
import java.util.Vector;
import weka.core.Attribute;
import weka.core.ContingencyTables;
import weka.core.FastVector;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.Range;
import weka.core.SparseInstance;
import weka.core.SpecialFunctions;
import weka.core.UnassignedClassException;
import weka.core.UnsupportedClassTypeException;
import weka.core.Utils;
import weka.core.WeightedInstancesHandler;
import weka.filters.Filter;
import weka.filters.SupervisedFilter;
/**
* An instance filter that discretizes a range of numeric attributes in
* the dataset into nominal attributes. Discretization is by
* Fayyad & Irani's MDL method (the default).<p>
*
* Valid filter-specific options are: <p>
*
* -R col1,col2-col4,... <br>
* Specifies list of columns to Discretize. First
* and last are valid indexes. (default: none) <p>
*
* -V <br>
* Invert matching sense.<p>
*
* -D <br>
* Make binary nominal attributes. <p>
*
* -E <br>
* Use better encoding of split point for MDL. <p>
*
* -K <br>
* Use Kononeko's MDL criterion. <p>
*
* @author Len Trigg (trigg@cs.waikato.ac.nz)
* @author Eibe Frank (eibe@cs.waikato.ac.nz)
* @version $Revision$
*/
public class Discretize extends Filter
implements SupervisedFilter, OptionHandler, WeightedInstancesHandler {
/** Stores which columns to Discretize */
protected Range m_DiscretizeCols = new Range();
/** Store the current cutpoints */
protected double [][] m_CutPoints = null;
/** Output binary attributes for discretized attributes. */
protected boolean m_MakeBinary = false;
/** Use better encoding of split point for MDL. */
protected boolean m_UseBetterEncoding = false;
/** Use Kononenko's MDL criterion instead of Fayyad et al.'s */
protected boolean m_UseKononenko = false;
/** Constructor - initialises the filter */
public Discretize() {
setAttributeIndices("first-last");
}
/**
* Gets an enumeration describing the available options.
*
* @return an enumeration of all the available options.
*/
public Enumeration listOptions() {
Vector newVector = new Vector(7);
newVector.addElement(new Option(
"\tSpecifies list of columns to Discretize. First"
+ " and last are valid indexes.\n"
+ "\t(default none)",
"R", 1, "-R <col1,col2-col4,...>"));
newVector.addElement(new Option(
"\tInvert matching sense of column indexes.",
"V", 0, "-V"));
newVector.addElement(new Option(
"\tOutput binary attributes for discretized attributes.",
"D", 0, "-D"));
newVector.addElement(new Option(
"\tUse better encoding of split point for MDL.",
"E", 0, "-E"));
newVector.addElement(new Option(
"\tUse Kononenko's MDL criterion.",
"K", 0, "-K"));
return newVector.elements();
}
/**
* Parses the options for this object. Valid options are: <p>
*
* -R col1,col2-col4,... <br>
* Specifies list of columns to Discretize. First
* and last are valid indexes. (default none) <p>
*
* -V <br>
* Invert matching sense.<p>
*
* -D <br>
* Make binary nominal attributes. <p>
*
* -E <br>
* Use better encoding of split point for MDL. <p>
*
* -K <br>
* Use Kononeko's MDL criterion. <p>
*
* @param options the list of options as an array of strings
* @exception Exception if an option is not supported
*/
public void setOptions(String[] options) throws Exception {
setMakeBinary(Utils.getFlag('D', options));
setUseBetterEncoding(Utils.getFlag('E', options));
setUseKononenko(Utils.getFlag('K', options));
setInvertSelection(Utils.getFlag('V', options));
String convertList = Utils.getOption('R', options);
if (convertList.length() != 0) {
setAttributeIndices(convertList);
} else {
setAttributeIndices("first-last");
}
if (getInputFormat() != null) {
setInputFormat(getInputFormat());
}
}
/**
* Gets the current settings of the filter.
*
* @return an array of strings suitable for passing to setOptions
*/
public String [] getOptions() {
String [] options = new String [12];
int current = 0;
if (getMakeBinary()) {
options[current++] = "-D";
}
if (getUseBetterEncoding()) {
options[current++] = "-E";
}
if (getUseKononenko()) {
options[current++] = "-K";
}
if (getInvertSelection()) {
options[current++] = "-V";
}
if (!getAttributeIndices().equals("")) {
options[current++] = "-R"; options[current++] = getAttributeIndices();
}
while (current < options.length) {
options[current++] = "";
}
return options;
}
/**
* Sets the format of the input instances.
*
* @param instanceInfo an Instances object containing the input instance
* structure (any instances contained in the object are ignored - only the
* structure is required).
* @return true if the outputFormat may be collected immediately
* @exception Exception if the input format can't be set successfully
*/
public boolean setInputFormat(Instances instanceInfo) throws Exception {
super.setInputFormat(instanceInfo);
m_DiscretizeCols.setUpper(instanceInfo.numAttributes() - 1);
m_CutPoints = null;
if (instanceInfo.classIndex() < 0) {
throw new UnassignedClassException("Cannot use class-based discretization: "
+ "no class assigned to the dataset");
}
if (!instanceInfo.classAttribute().isNominal()) {
throw new UnsupportedClassTypeException("Supervised discretization not possible:"
+ " class is not nominal!");
}
// If we implement loading cutfiles, then load
//them here and set the output format
return false;
}
/**
* Input an instance for filtering. Ordinarily the instance is processed
* and made available for output immediately. Some filters require all
* instances be read before producing output.
*
* @param instance the input instance
* @return true if the filtered instance may now be
* collected with output().
* @exception IllegalStateException if no input format has been defined.
*/
public boolean input(Instance instance) {
if (getInputFormat() == null) {
throw new IllegalStateException("No input instance format defined");
}
if (m_NewBatch) {
resetQueue();
m_NewBatch = false;
}
if (m_CutPoints != null) {
convertInstance(instance);
return true;
}
bufferInput(instance);
return false;
}
/**
* Signifies that this batch of input to the filter is finished. If the
* filter requires all instances prior to filtering, output() may now
* be called to retrieve the filtered instances.
*
* @return true if there are instances pending output
* @exception IllegalStateException if no input structure has been defined
*/
public boolean batchFinished() {
if (getInputFormat() == null) {
throw new IllegalStateException("No input instance format defined");
}
if (m_CutPoints == null) {
calculateCutPoints();
setOutputFormat();
// If we implement saving cutfiles, save the cuts here
// Convert pending input instances
for(int i = 0; i < getInputFormat().numInstances(); i++) {
convertInstance(getInputFormat().instance(i));
}
}
flushInput();
m_NewBatch = true;
return (numPendingOutput() != 0);
}
/**
* Returns a string describing this filter
*
* @return a description of the filter suitable for
* displaying in the explorer/experimenter gui
*/
public String globalInfo() {
return "An instance filter that discretizes a range of numeric"
+ " attributes in the dataset into nominal attributes."
+ " Discretization is by Fayyad & Irani's MDL method (the default).";
}
/**
* Returns the tip text for this property
*
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String makeBinaryTipText() {
return "Make resulting attributes binary.";
}
/**
* Gets whether binary attributes should be made for discretized ones.
*
* @return true if attributes will be binarized
*/
public boolean getMakeBinary() {
return m_MakeBinary;
}
/**
* Sets whether binary attributes should be made for discretized ones.
*
* @param makeBinary if binary attributes are to be made
*/
public void setMakeBinary(boolean makeBinary) {
m_MakeBinary = makeBinary;
}
/**
* Returns the tip text for this property
*
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String useKononenkoTipText() {
return "Use Kononenko's MDL criterion. If set to false"
+ " uses the Fayyad & Irani criterion.";
}
/**
* Gets whether Kononenko's MDL criterion is to be used.
*
* @return true if Kononenko's criterion will be used.
*/
public boolean getUseKononenko() {
return m_UseKononenko;
}
/**
* Sets whether Kononenko's MDL criterion is to be used.
*
* @param useKon true if Kononenko's one is to be used
*/
public void setUseKononenko(boolean useKon) {
m_UseKononenko = useKon;
}
/**
* Returns the tip text for this property
*
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String useBetterEncodingTipText() {
return "Uses a more efficient split point encoding.";
}
/**
* Gets whether better encoding is to be used for MDL.
*
* @return true if the better MDL encoding will be used
*/
public boolean getUseBetterEncoding() {
return m_UseBetterEncoding;
}
/**
* Sets whether better encoding is to be used for MDL.
*
* @param useBetterEncoding true if better encoding to be used.
*/
public void setUseBetterEncoding(boolean useBetterEncoding) {
m_UseBetterEncoding = useBetterEncoding;
}
/**
* Returns the tip text for this property
*
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String invertSelectionTipText() {
return "Set attribute selection mode. If false, only selected"
+ " (numeric) attributes in the range will be discretized; if"
+ " true, only non-selected attributes will be discretized.";
}
/**
* Gets whether the supplied columns are to be removed or kept
*
* @return true if the supplied columns will be kept
*/
public boolean getInvertSelection() {
return m_DiscretizeCols.getInvert();
}
/**
* Sets whether selected columns should be removed or kept. If true the
* selected columns are kept and unselected columns are deleted. If false
* selected columns are deleted and unselected columns are kept.
*
* @param invert the new invert setting
*/
public void setInvertSelection(boolean invert) {
m_DiscretizeCols.setInvert(invert);
}
/**
* Returns the tip text for this property
*
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String attributeIndicesTipText() {
return "Specify range of attributes to act on."
+ " This is a comma separated list of attribute indices, with"
+ " \"first\" and \"last\" valid values. Specify an inclusive"
+ " range with \"-\". E.g: \"first-3,5,6-10,last\".";
}
/**
* Gets the current range selection
*
* @return a string containing a comma separated list of ranges
*/
public String getAttributeIndices() {
return m_DiscretizeCols.getRanges();
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -