⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 geneticsearch.java

📁 一个数据挖掘软件ALPHAMINERR的整个过程的JAVA版源代码
💻 JAVA
📖 第 1 页 / 共 3 页
字号:
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *    GeneticSearch.java
 *    Copyright (C) 1999 Mark Hall
 *
 */

package  weka.attributeSelection;

import java.io.Serializable;
import java.util.BitSet;
import java.util.Enumeration;
import java.util.Hashtable;
import java.util.Random;
import java.util.Vector;

import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.Range;
import weka.core.Utils;

/** 
 * Class for performing a genetic based search. <p>
 *
 * For more information see: <p>
 * David E. Goldberg (1989). Genetic algorithms in search, optimization and
 * machine learning. Addison-Wesley. <p>
 *
 * Valid options are: <p>
 *
 * -Z <size of the population> <br>
 * Sets the size of the population. (default = 20). <p>
 *
 * -G <number of generations> <br>
 * Sets the number of generations to perform.
 * (default = 5). <p>
 *
 * -C <probability of crossover> <br>
 * Sets the probability that crossover will occur.
 * (default = .6). <p>
 *
 * -M <probability of mutation> <br>
 * Sets the probability that a feature will be toggled on/off. <p>
 *
 * -R <report frequency> <br>
 * Sets how frequently reports will be generated. Eg, setting the value
 * to 5 will generate a report every 5th generation. <p>
 * (default = number of generations). <p>
 *
 * -S <seed> <br>
 * Sets the seed for random number generation. <p>
 *
 * @author Mark Hall (mhall@cs.waikato.ac.nz)
 * @version $Revision$
 */
public class GeneticSearch extends ASSearch implements 
  StartSetHandler, OptionHandler {

  /** 
   * holds a starting set as an array of attributes. Becomes one member of the
   * initial random population
   */
  private int[] m_starting;

  /** holds the start set for the search as a Range */
  private Range m_startRange;
  
 /** does the data have a class */
  private boolean m_hasClass;
 
  /** holds the class index */
  private int m_classIndex;
 
  /** number of attributes in the data */
  private int m_numAttribs;

  /** the current population */
  private GABitSet [] m_population;

  /** the number of individual solutions */
  private int m_popSize;

  /** the best population member found during the search */
  private GABitSet m_best;

  /** the number of features in the best population member */
  private int m_bestFeatureCount;

  /** the number of entries to cache for lookup */
  private int m_lookupTableSize;

  /** the lookup table */
  private Hashtable m_lookupTable;

  /** random number generation */
  private Random m_random;

  /** seed for random number generation */
  private int m_seed;

  /** the probability of crossover occuring */
  private double m_pCrossover;

  /** the probability of mutation occuring */
  private double m_pMutation;

  /** sum of the current population fitness */
  private double m_sumFitness;

  private double m_maxFitness;
  private double m_minFitness;
  private double m_avgFitness;

  /** the maximum number of generations to evaluate */
  private int m_maxGenerations;

  /** how often reports are generated */
  private int m_reportFrequency;

  /** holds the generation reports */
  private StringBuffer m_generationReports;

  // Inner class
  protected class GABitSet implements Cloneable, Serializable {
    
    private BitSet m_chromosome;

    /** holds raw merit */
    private double m_objective = -Double.MAX_VALUE;
    private double m_fitness;
    
    /**
     * Constructor
     */
    public GABitSet () {
      m_chromosome = new BitSet();
    }

    /**
     * makes a copy of this GABitSet
     * @return a copy of the object
     * @exception Exception if something goes wrong
     */
    public Object clone() throws CloneNotSupportedException {
      GABitSet temp = new GABitSet();
      
      temp.setObjective(this.getObjective());
      temp.setFitness(this.getFitness());
      temp.setChromosome((BitSet)(this.m_chromosome.clone()));
      return temp;
      //return super.clone();
    }

    /**
     * sets the objective merit value
     * @param objective the objective value of this population member
     */
    public void setObjective(double objective) {
      m_objective = objective;
    }
      
    /**
     * gets the objective merit
     * @return the objective merit of this population member
     */
    public double getObjective() {
      return m_objective;
    }

    /**
     * sets the scaled fitness
     * @param the scaled fitness of this population member
     */
    public void setFitness(double fitness) {
      m_fitness = fitness;
    }

    /**
     * gets the scaled fitness
     * @return the scaled fitness of this population member
     */
    public double getFitness() {
      return m_fitness;
    }

    /**
     * get the chromosome
     * @return the chromosome of this population member
     */
    public BitSet getChromosome() {
      return m_chromosome;
    }

    /**
     * set the chromosome
     * @param the chromosome to be set for this population member
     */
    public void setChromosome(BitSet c) {
      m_chromosome = c;
    }

    /**
     * unset a bit in the chromosome
     * @param bit the bit to be cleared
     */
    public void clear(int bit) {
      m_chromosome.clear(bit);
    }

    /**
     * set a bit in the chromosome
     * @param bit the bit to be set
     */
    public void set(int bit) {
      m_chromosome.set(bit);
    }

    /**
     * get the value of a bit in the chromosome
     * @param bit the bit to query
     * @return the value of the bit
     */
    public boolean get(int bit) {
      return m_chromosome.get(bit);
    }
  }

  /**
   * Returns an enumeration describing the available options.
   * @return an enumeration of all the available options.
   **/
  public Enumeration listOptions () {
    Vector newVector = new Vector(6);

    newVector.addElement(new Option("\tSpecify a starting set of attributes." 
				    + "\n\tEg. 1,3,5-7."
				    +"If supplied, the starting set becomes"
				    +"\n\tone member of the initial random"
				    +"\n\tpopulation."
				    ,"P",1
				    , "-P <start set>"));
    newVector.addElement(new Option("\tSet the size of the population."
				    +"\n\t(default = 10)."
				    , "Z", 1
				    , "-Z <population size>"));
    newVector.addElement(new Option("\tSet the number of generations."
				    +"\n\t(default = 20)" 
				    , "G", 1, "-G <number of generations>"));
    newVector.addElement(new Option("\tSet the probability of crossover."
				    +"\n\t(default = 0.6)" 
				    , "C", 1, "-C <probability of"
				    +" crossover>"));    
    newVector.addElement(new Option("\tSet the probability of mutation."
				    +"\n\t(default = 0.033)" 
				    , "M", 1, "-M <probability of mutation>"));

    newVector.addElement(new Option("\tSet frequency of generation reports."
				    +"\n\te.g, setting the value to 5 will "
				    +"\n\t report every 5th generation"
				    +"\n\t(default = number of generations)" 
				    , "R", 1, "-R <report frequency>"));
    newVector.addElement(new Option("\tSet the random number seed."
				    +"\n\t(default = 1)" 
				    , "S", 1, "-S <seed>"));
    return  newVector.elements();
  }

  /**
   * Parses a given list of options.
   *
   * Valid options are: <p>
   *
   * -Z <size of the population> <br>
   * Sets the size of the population. (default = 20). <p>
   *
   * -G <number of generations> <br>
   * Sets the number of generations to perform.
   * (default = 5). <p>
   *
   * -C <probability of crossover> <br>
   * Sets the probability that crossover will occur.
   * (default = .6). <p>
   *
   * -M <probability of mutation> <br>
   * Sets the probability that a feature will be toggled on/off. <p>
   *
   * -R <report frequency> <br>
   * Sets how frequently reports will be generated. Eg, setting the value
   * to 5 will generate a report every 5th generation. <p>
   * (default = number of generations). <p>
   *
   * -S <seed> <br>
   * Sets the seed for random number generation. <p>
   *
   * @param options the list of options as an array of strings
   * @exception Exception if an option is not supported
   *
   **/
  public void setOptions (String[] options)
    throws Exception {
    String optionString;
    resetOptions();

    optionString = Utils.getOption('P', options);
    if (optionString.length() != 0) {
      setStartSet(optionString);
    }

    optionString = Utils.getOption('Z', options);
    if (optionString.length() != 0) {
      setPopulationSize(Integer.parseInt(optionString));
    }

    optionString = Utils.getOption('G', options);
    if (optionString.length() != 0) {
      setMaxGenerations(Integer.parseInt(optionString));
      setReportFrequency(Integer.parseInt(optionString));
    }

    optionString = Utils.getOption('C', options);
    if (optionString.length() != 0) {
      setCrossoverProb((new Double(optionString)).doubleValue());
    }

    optionString = Utils.getOption('M', options);
    if (optionString.length() != 0) {
      setMutationProb((new Double(optionString)).doubleValue());
    }

    optionString = Utils.getOption('R', options);
    if (optionString.length() != 0) {
      setReportFrequency(Integer.parseInt(optionString));
    }

    optionString = Utils.getOption('S', options);
    if (optionString.length() != 0) {
      setSeed(Integer.parseInt(optionString));
    }
  }

  /**
   * Gets the current settings of ReliefFAttributeEval.
   *
   * @return an array of strings suitable for passing to setOptions()
   */
  public String[] getOptions () {
    String[] options = new String[14];
    int current = 0;

    if (!(getStartSet().equals(""))) {
      options[current++] = "-P";
      options[current++] = ""+startSetToString();
    }
    options[current++] = "-Z";
    options[current++] = "" + getPopulationSize();
    options[current++] = "-G";
    options[current++] = "" + getMaxGenerations();
    options[current++] = "-C";
    options[current++] = "" + getCrossoverProb();
    options[current++] = "-M";
    options[current++] = "" + getMutationProb();
    options[current++] = "-R";
    options[current++] = "" + getReportFrequency();
    options[current++] = "-S";
    options[current++] = "" + getSeed();

    while (current < options.length) {
      options[current++] = "";
    }
    return  options;
  }

  /**
   * Returns the tip text for this property
   * @return tip text for this property suitable for
   * displaying in the explorer/experimenter gui
   */
  public String startSetTipText() {
    return "Set a start point for the search. This is specified as a comma "
      +"seperated list off attribute indexes starting at 1. It can include "
      +"ranges. Eg. 1,2,5-9,17. The start set becomes one of the population "
      +"members of the initial population.";

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -