⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rulestats.java

📁 一个数据挖掘软件ALPHAMINERR的整个过程的JAVA版源代码
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
    double coverBits, uncoverBits; // What's the error?
    double expErr;                 // Expected FP or FN

    if(Utils.gr(cover, uncover)){
      expErr = expFPOverErr*(fp+fn);
      coverBits = subsetDL(cover, fp, expErr/cover);
      uncoverBits = Utils.gr(uncover, 0.0) ? 
	subsetDL(uncover, fn, fn/uncover) : 0.0;	    
    }
    else{
      expErr = (1.0-expFPOverErr)*(fp+fn);
      coverBits = Utils.gr(cover, 0.0) ? 
	subsetDL(cover, fp, fp/cover) : 0.0;
      uncoverBits = subsetDL(uncover, fn, expErr/uncover);
    }
	
    /*
      System.err.println("!!!cover: " + cover + "|uncover" + uncover +
      "|coverBits: "+coverBits+"|uncBits: "+ uncoverBits+
      "|FPRate: "+expFPOverErr + "|expErr: "+expErr+
      "|fp: "+fp+"|fn: "+fn+"|total: "+totalBits);
    */
    return (totalBits + coverBits + uncoverBits);
  }

    
  /**
   * Calculate the potential to decrease DL of the ruleset,
   * i.e. the possible DL that could be decreased by deleting
   * the rule whose index and simple statstics are given.  
   * If there's no potentials (i.e. smOrEq 0 && error rate < 0.5),
   * it returns NaN. <p>
   *
   * The way this procedure does is copied from original RIPPER
   * implementation and is quite bizzare because it 
   * does not update the following rules' stats recursively 
   * any more when testing each rule, which means it assumes
   * after deletion no data covered by the following rules (or
   * regards the deleted rule as the last rule).  Reasonable 
   * assumption?<p>
   *
   * @param index the index of the rule in m_Ruleset to be deleted
   * @param expFPOverErr expected FP/(FP+FN)
   * @param rulesetStat the simple statistics of the ruleset, updated
   *                    if the rule should be deleted
   * @param ruleStat the simple statistics of the rule to be deleted
   * @param checkErr whether check if error rate >= 0.5
   * @return the potential DL that could be decreased
   */
  public double potential(int index, double expFPOverErr, 
			  double[] rulesetStat, double[] ruleStat,
			  boolean checkErr){
    //System.out.println("!!!inside potential: ");
    // Restore the stats if deleted
    double pcov = rulesetStat[0] - ruleStat[0];
    double puncov = rulesetStat[1] + ruleStat[0];
    double pfp = rulesetStat[4] - ruleStat[4];
    double pfn = rulesetStat[5] + ruleStat[2];

    double dataDLWith = dataDL(expFPOverErr, rulesetStat[0], 
			       rulesetStat[1], rulesetStat[4], 
			       rulesetStat[5]);
    double theoryDLWith = theoryDL(index);
    double dataDLWithout = dataDL(expFPOverErr, pcov, puncov, pfp, pfn);

    double potential = dataDLWith + theoryDLWith - dataDLWithout;
    double err = ruleStat[4] / ruleStat[0];
    /*System.out.println("!!!"+dataDLWith +" | "+ 
      theoryDLWith + " | " 
      +dataDLWithout+"|"+ruleStat[4] + " / " + ruleStat[0]);
    */
    boolean overErr = Utils.grOrEq(err, 0.5);
    if(!checkErr)
      overErr = false;
	
    if(Utils.grOrEq(potential, 0.0) || overErr){ 
      // If deleted, update ruleset stats.  Other stats do not matter
      rulesetStat[0] = pcov;
      rulesetStat[1] = puncov;
      rulesetStat[4] = pfp;
      rulesetStat[5] = pfn;
      return potential;
    }
    else
      return Double.NaN;
  }
    
    
  /**
   * Compute the minimal data description length of the ruleset
   * if the rule in the given position is deleted.<br>
   * The min_data_DL_if_deleted = data_DL_if_deleted - potential
   *
   * @param index the index of the rule in question
   * @param expFPRate expected FP/(FP+FN), used in dataDL calculation
   * @param checkErr whether check if error rate >= 0.5
   * @param return the minDataDL
   */
  public double minDataDLIfDeleted(int index, double expFPRate,
				   boolean checkErr){
    //System.out.println("!!!Enter without: ");
    double[] rulesetStat = new double[6]; // Stats of ruleset if deleted
    int more = m_Ruleset.size() - 1 - index; // How many rules after?
    FastVector indexPlus = new FastVector(more); // Their stats
	
    // 0...(index-1) are OK	
    for(int j=0; j<index; j++){
      // Covered stats are cumulative
      rulesetStat[0] += ((double[])m_SimpleStats.elementAt(j))[0];
      rulesetStat[2] += ((double[])m_SimpleStats.elementAt(j))[2];
      rulesetStat[4] += ((double[])m_SimpleStats.elementAt(j))[4];
    }
	
    // Recount data from index+1
    Instances data = (index == 0) ?  
      m_Data : ((Instances[])m_Filtered.elementAt(index-1))[1];	
    //System.out.println("!!!without: " + data.sumOfWeights());

    for(int j=(index+1); j<m_Ruleset.size(); j++){
      double[] stats = new double[6];
      Instances[] split = computeSimpleStats(j, data, stats, null);
      indexPlus.addElement(stats);
      rulesetStat[0] += stats[0];
      rulesetStat[2] += stats[2];
      rulesetStat[4] += stats[4];	   
      data = split[1];
    }
    // Uncovered stats are those of the last rule
    if(more > 0){
      rulesetStat[1] = ((double[])indexPlus.lastElement())[1];
      rulesetStat[3] = ((double[])indexPlus.lastElement())[3];
      rulesetStat[5] = ((double[])indexPlus.lastElement())[5];
    }
    else if(index > 0){
      rulesetStat[1] = 
	((double[])m_SimpleStats.elementAt(index-1))[1];
      rulesetStat[3] =
	((double[])m_SimpleStats.elementAt(index-1))[3];
      rulesetStat[5] = 
	((double[])m_SimpleStats.elementAt(index-1))[5];
    }	
    else{ // Null coverage
      rulesetStat[1] = ((double[])m_SimpleStats.elementAt(0))[0] +
	((double[])m_SimpleStats.elementAt(0))[1];
      rulesetStat[3] = ((double[])m_SimpleStats.elementAt(0))[3] +
	((double[])m_SimpleStats.elementAt(0))[4];
      rulesetStat[5] = ((double[])m_SimpleStats.elementAt(0))[2] +
	((double[])m_SimpleStats.elementAt(0))[5];	    
    }
	
    // Potential 
    double potential = 0;
    for(int k=index+1; k<m_Ruleset.size(); k++){
      double[] ruleStat = (double[])indexPlus.elementAt(k-index-1);
      double ifDeleted = potential(k, expFPRate, rulesetStat, 
				   ruleStat, checkErr);
      if(!Double.isNaN(ifDeleted))
	potential += ifDeleted;
    }

    // Data DL of the ruleset without the rule
    // Note that ruleset stats has already been updated to reflect 
    // deletion if any potential		
    double dataDLWithout = dataDL(expFPRate, rulesetStat[0], 
				  rulesetStat[1], rulesetStat[4], 
				  rulesetStat[5]);
    //System.out.println("!!!without: "+dataDLWithout + " |potential: "+
    //		   potential);
    // Why subtract potential again?  To reflect change of theory DL??
    return (dataDLWithout - potential);
  }    
    
    
  /**
   * Compute the minimal data description length of the ruleset
   * if the rule in the given position is NOT deleted.<br>
   * The min_data_DL_if_n_deleted = data_DL_if_n_deleted - potential
   *
   * @param index the index of the rule in question
   * @param expFPRate expected FP/(FP+FN), used in dataDL calculation
   * @param checkErr whether check if error rate >= 0.5
   * @param return the minDataDL
   */
  public double minDataDLIfExists(int index, double expFPRate,
				  boolean checkErr){
    //	System.out.println("!!!Enter with: ");
    double[] rulesetStat = new double[6]; // Stats of ruleset if rule exists
    for(int j=0; j<m_SimpleStats.size(); j++){
      // Covered stats are cumulative
      rulesetStat[0] += ((double[])m_SimpleStats.elementAt(j))[0];
      rulesetStat[2] += ((double[])m_SimpleStats.elementAt(j))[2];
      rulesetStat[4] += ((double[])m_SimpleStats.elementAt(j))[4];
      if(j == m_SimpleStats.size()-1){ // Last rule
	rulesetStat[1] = ((double[])m_SimpleStats.elementAt(j))[1];
	rulesetStat[3] = ((double[])m_SimpleStats.elementAt(j))[3];
	rulesetStat[5] = ((double[])m_SimpleStats.elementAt(j))[5];
      }	    
    }
	
    // Potential 
    double potential = 0;
    for(int k=index+1; k<m_SimpleStats.size(); k++){
      double[] ruleStat = (double[])getSimpleStats(k);
      double ifDeleted = potential(k, expFPRate, rulesetStat, 
				   ruleStat, checkErr);
      if(!Double.isNaN(ifDeleted))
	potential += ifDeleted;
    }
	
    // Data DL of the ruleset without the rule
    // Note that ruleset stats has already been updated to reflect deletion
    // if any potential	
    double dataDLWith = dataDL(expFPRate, rulesetStat[0], 
			       rulesetStat[1], rulesetStat[4], 
			       rulesetStat[5]);	
    //System.out.println("!!!with: "+dataDLWith + " |potential: "+
    //		   potential);
    return (dataDLWith - potential);
  }
    
    
  /**
   * The description length (DL) of the ruleset relative to if the
   * rule in the given position is deleted, which is obtained by: <br>
   * MDL if the rule exists - MDL if the rule does not exist <br>
   * Note the minimal possible DL of the ruleset is calculated(i.e. some
   * other rules may also be deleted) instead of the DL of the current
   * ruleset.<p>
   *
   * @param index the given position of the rule in question 
   *              (assuming correct)
   * @param expFPRate expected FP/(FP+FN), used in dataDL calculation
   * @param checkErr whether check if error rate >= 0.5
   * @return the relative DL
   */
  public double relativeDL(int index, double expFPRate, boolean checkErr){ 
		 
    return (minDataDLIfExists(index, expFPRate, checkErr) 
	    + theoryDL(index) - 
	    minDataDLIfDeleted(index, expFPRate, checkErr));
  }  
    
    
  /**
   * Try to reduce the DL of the ruleset by testing removing the rules
   * one by one in reverse order and update all the stats
   * @param expFPRate expected FP/(FP+FN), used in dataDL calculation
   * @param checkErr whether check if error rate >= 0.5
   */
  public void reduceDL(double expFPRate, boolean checkErr){
	
    boolean needUpdate = false;
    double[] rulesetStat = new double[6];
    for(int j=0; j<m_SimpleStats.size(); j++){
      // Covered stats are cumulative
      rulesetStat[0] += ((double[])m_SimpleStats.elementAt(j))[0];
      rulesetStat[2] += ((double[])m_SimpleStats.elementAt(j))[2];
      rulesetStat[4] += ((double[])m_SimpleStats.elementAt(j))[4];
      if(j == m_SimpleStats.size()-1){ // Last rule
	rulesetStat[1] = ((double[])m_SimpleStats.elementAt(j))[1];
	rulesetStat[3] = ((double[])m_SimpleStats.elementAt(j))[3];
	rulesetStat[5] = ((double[])m_SimpleStats.elementAt(j))[5];
      }	    
    }
	
    // Potential 
    double potential = 0;
    for(int k=m_SimpleStats.size()-1; k>=0; k--){
	    	
      double[] ruleStat = (double[])m_SimpleStats.elementAt(k);

      // rulesetStat updated
      double ifDeleted = potential(k, expFPRate, rulesetStat, 
				   ruleStat, checkErr);
      if(!Double.isNaN(ifDeleted)){  
	/*System.err.println("!!!deleted ("+k+"): save "+ifDeleted
	  +" | "+rulesetStat[0]
	  +" | "+rulesetStat[1]
	  +" | "+rulesetStat[4]
	  +" | "+rulesetStat[5]);
	*/
	
	if(k == (m_SimpleStats.size()-1))
	    removeLast();
	else{
	    m_Ruleset.removeElementAt(k);
	    needUpdate = true;
	}
      }
    }
	
    if(needUpdate){
      m_Filtered = null;
      m_SimpleStats = null;
      countData();
    }
  }
    
  /**
   * Remove the last rule in the ruleset as well as it's stats.
   * It might be useful when the last rule was added for testing
   * purpose and then the test failed
   */
  public void removeLast(){
    int last = m_Ruleset.size()-1;
    m_Ruleset.removeElementAt(last);
    m_Filtered.removeElementAt(last);
    m_SimpleStats.removeElementAt(last);	
    if(m_Distributions != null)
	m_Distributions.removeElementAt(last);
  }

  /**
   * Static utility function to count the data covered by the 
   * rules after the given index in the given rules, and then
   * remove them.  It returns the data not covered by the
   * successive rules.
   *
   * @param data the data to be processed
   * @param rules the ruleset
   * @param index the given index
   * @return the data after processing
   */
  public static Instances rmCoveredBySuccessives(Instances data, FastVector rules, int index){
    Instances rt = new Instances(data, 0);

    for(int i=0; i < data.numInstances(); i++){
      Instance datum = data.instance(i);
      boolean covered = false;	    
	    
      for(int j=index+1; j<rules.size();j++){
	Rule rule = (Rule)rules.elementAt(j);
	if(rule.covers(datum)){
	  covered = true;
	  break;
	}
      }

      if(!covered)
	rt.add(datum);
    }	
    return rt;
  } 
    
  /** 
   * Stratify the given data into the given number of bags based on the class
   * values.  It differs from the <code>Instances.stratify(int fold)</code>
   * that before stratification it sorts the instances according to the 
   * class order in the header file.  It assumes no missing values in the class.
   * 
   * @param data the given data
   * @param folds the given number of folds
   * @param rand the random object used to randomize the instances
   * @return the stratified instances
   */
  public static final Instances stratify(Instances data, int folds, Random rand){
    if(!data.classAttribute().isNominal())
      return data;
	
    Instances result = new Instances(data, 0);
    Instances[] bagsByClasses = new Instances[data.numClasses()];
	
    for(int i=0; i < bagsByClasses.length; i++)
      bagsByClasses[i] = new Instances(data, 0);
	
    // Sort by class	
    for(int j=0; j < data.numInstances(); j++){
      Instance datum = data.instance(j);
      bagsByClasses[(int)datum.classValue()].add(datum);
    }
	
    // Randomize each class
    for(int j=0; j < bagsByClasses.length; j++)
      bagsByClasses[j].randomize(rand);
	
    for(int k=0; k < folds; k++){
      int offset = k, bag = 0;
    oneFold:
      while (true){	
	while(offset >= bagsByClasses[bag].numInstances()){
	  offset -= bagsByClasses[bag].numInstances();
	  if (++bag >= bagsByClasses.length)// Next bag
	    break oneFold;      	   
	}	
	    
	result.add(bagsByClasses[bag].instance(offset));
	offset += folds;				
      }
    }
	
    return result;
  }

  /** 
   * Compute the combined DL of the ruleset in this class, i.e. theory 
   * DL and data DL.  Note this procedure computes the combined DL
   * according to the current status of the ruleset in this class
   * 
   * @param expFPRate expected FP/(FP+FN), used in dataDL calculation
   * @param predicted the default classification if ruleset covers null
   * @return the combined class
   */
  public double combinedDL(double expFPRate, double predicted){
    double rt = 0;
    
    if(getRulesetSize() > 0) {
      double[] stats = (double[])m_SimpleStats.lastElement();
      for(int j=getRulesetSize()-2; j >= 0; j--){
	stats[0] += getSimpleStats(j)[0];
	stats[2] += getSimpleStats(j)[2];
	stats[4] += getSimpleStats(j)[4];
      }
      rt += dataDL(expFPRate, stats[0], stats[1], 
		   stats[4], stats[5]);     // Data DL      
    }
    else{ // Null coverage ruleset
      double fn = 0.0;
      for(int j=0; j < m_Data.numInstances(); j++)
	if((int)m_Data.instance(j).classValue() == (int)predicted)
	  fn += m_Data.instance(j).weight();
      rt += dataDL(expFPRate, 0.0, m_Data.sumOfWeights(), 0.0, fn);	
    }     
    
    for(int i=0; i<getRulesetSize(); i++) // Theory DL
      rt += theoryDL(i);     
    
    return rt;
  }
  
  /** 
   * Patition the data into 2, first of which has (numFolds-1)/numFolds of
   * the data and the second has 1/numFolds of the data
   *
   * 
   * @param data the given data
   * @param numFolds the given number of folds
   * @return the patitioned instances
   */
  public static final Instances[] partition(Instances data, int numFolds){
    Instances[] rt = new Instances[2];
    int splits = data.numInstances() * (numFolds - 1) / numFolds;
    
    rt[0] = new Instances(data, 0, splits);
    rt[1] = new Instances(data, splits, data.numInstances()-splits);
    
    return rt;
  }  
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -