📄 rulestats.java
字号:
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* RuleStats.java
* Copyright (C) 2001 Xin Xu
*/
package weka.classifiers.rules;
import java.io.Serializable;
import java.util.Enumeration;
import java.util.Random;
import weka.core.Attribute;
import weka.core.FastVector;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Utils;
/**
* This class implements the statistics functions used in the
* propositional rule learner, from the simpler ones like count of
* true/false positive/negatives, filter data based on the ruleset, etc.
* to the more sophisticated ones such as MDL calculation and rule
* variants generation for each rule in the ruleset. <p>
*
* Obviously the statistics functions listed above need the specific
* data and the specific ruleset, which are given in order to instantiate
* an object of this class. <p>
*
* @author Xin Xu (xx5@cs.waikato.ac.nz)
* @version $Revision$
*/
public class RuleStats implements Serializable {
/** The data on which the stats calculation is based */
private Instances m_Data;
/** The specific ruleset in question */
private FastVector m_Ruleset;
/** The simple stats of each rule */
private FastVector m_SimpleStats;
/** The set of instances filtered by the ruleset */
private FastVector m_Filtered;
/** The total number of possible conditions that could
* appear in a rule */
private double m_Total;
/** The redundancy factor in theory description length */
private static double REDUNDANCY_FACTOR = 0.5;
/** The theory weight in the MDL calculation */
private double MDL_THEORY_WEIGHT = 1.0;
/** The class distributions predicted by each rule */
private FastVector m_Distributions;
/** Default constructor */
public RuleStats(){
m_Data = null;
m_Ruleset = null;
m_SimpleStats = null;
m_Filtered = null;
m_Distributions = null;
m_Total = -1;
}
/**
* Constructor that provides ruleset and data
*
* @param data the data
* @param rules the ruleset
*/
public RuleStats(Instances data, FastVector rules){
this();
m_Data = data;
m_Ruleset = rules;
}
/**
* Set the number of all conditions that could appear
* in a rule in this RuleStats object, if the number set
* is smaller than 0 (typically -1), then it calcualtes
* based on the data store
*
* @param total the set number
*/
public void setNumAllConds(double total){
if(total < 0)
m_Total = numAllConditions(m_Data);
else
m_Total = total;
}
/**
* Set the data of the stats, overwriting the old one if any
*
* @param data the data to be set
*/
public void setData(Instances data){
m_Data = data;
}
/**
* Get the data of the stats
*
* @return the data
*/
public Instances getData(){
return m_Data;
}
/**
* Set the ruleset of the stats, overwriting the old one if any
*
* @param rules the set of rules to be set
*/
public void setRuleset(FastVector rules){
m_Ruleset = rules;
}
/**
* Get the ruleset of the stats
*
* @return the set of rules
*/
public FastVector getRuleset(){
return m_Ruleset;
}
/**
* Get the size of the ruleset in the stats
*
* @return the size of ruleset
*/
public int getRulesetSize(){
return m_Ruleset.size();
}
/**
* Get the simple stats of one rule, including 6 parameters:
* 0: coverage; 1:uncoverage; 2: true positive; 3: true negatives;
* 4: false positives; 5: false negatives
*
* @param index the index of the rule
* @return the stats
*/
public double[] getSimpleStats(int index){
if((m_SimpleStats != null) && (index < m_SimpleStats.size()))
return (double[])m_SimpleStats.elementAt(index);
return null;
}
/**
* Get the data after filtering the given rule
*
* @param index the index of the rule
* @return the data covered and uncovered by the rule
*/
public Instances[] getFiltered(int index){
if((m_Filtered != null) && (index < m_Filtered.size()))
return (Instances[])m_Filtered.elementAt(index);
return null;
}
/**
* Get the class distribution predicted by the rule in
* given position
*
* @param index the position index of the rule
* @return the class distributions
*/
public double[] getDistributions(int index){
if((m_Distributions != null) && (index < m_Distributions.size()))
return (double[])m_Distributions.elementAt(index);
return null;
}
/**
* Set the weight of theory in MDL calcualtion
*
* @param weight the weight to be set
*/
public void setMDLTheoryWeight(double weight){
MDL_THEORY_WEIGHT = weight;
}
/**
* Compute the number of all possible conditions that could
* appear in a rule of a given data. For nominal attributes,
* it's the number of values that could appear; for numeric
* attributes, it's the number of values * 2, i.e. <= and >=
* are counted as different possible conditions.
*
* @param data the given data
* @return number of all conditions of the data
*/
public static double numAllConditions(Instances data){
double total = 0;
Enumeration attEnum = data.emerateAttributes();
while(attEnum.hasMoreElements()){
Attribute att= (Attribute)attEnum.nextElement();
if(att.isNominal())
total += (double)att.numValues();
else
total += 2.0 * (double)data.numDistinctValues(att);
}
return total;
}
/**
* Filter the data according to the ruleset and compute the basic
* stats: coverage/uncoverage, true/false positive/negatives of
* each rule
*/
public void countData(){
if((m_Filtered != null) ||
(m_Ruleset == null) ||
(m_Data == null))
return;
int size = m_Ruleset.size();
m_Filtered = new FastVector(size);
m_SimpleStats = new FastVector(size);
m_Distributions = new FastVector(size);
Instances data = new Instances(m_Data);
for(int i=0; i < size; i++){
double[] stats = new double[6]; // 6 statistics parameters
double[] classCounts = new double[m_Data.classAttribute().numValues()];
Instances[] filtered = computeSimpleStats(i, data, stats, classCounts);
m_Filtered.addElement(filtered);
m_SimpleStats.addElement(stats);
m_Distributions.addElement(classCounts);
data = filtered[1]; // Data not covered
}
}
/**
* Count data from the position index in the ruleset
* assuming that given data are not covered by the rules
* in position 0...(index-1), and the statistics of these
* rules are provided.<br>
* This procedure is typically useful when a temporary
* object of RuleStats is constructed in order to efficiently
* calculate the relative DL of rule in position index,
* thus all other stuff is not needed.
*
* @param index the given position
* @param uncovered the data not covered by rules before index
* @param prevRuleStats the provided stats of previous rules
*/
public void countData(int index, Instances uncovered,
double[][] prevRuleStats){
if((m_Filtered != null) ||
(m_Ruleset == null))
return;
int size = m_Ruleset.size();
m_Filtered = new FastVector(size);
m_SimpleStats = new FastVector(size);
Instances[] data = new Instances[2];
data[1] = uncovered;
for(int i=0; i < index; i++){
m_SimpleStats.addElement(prevRuleStats[i]);
if(i+1 == index)
m_Filtered.addElement(data);
else
m_Filtered.addElement(new Object()); // Stuff sth.
}
for(int j=index; j < size; j++){
double[] stats = new double[6]; // 6 statistics parameters
Instances[] filtered = computeSimpleStats(j, data[1], stats, null);
m_Filtered.addElement(filtered);
m_SimpleStats.addElement(stats);
data = filtered; // Data not covered
}
}
/**
* Find all the instances in the dataset covered/not covered by
* the rule in given index, and the correponding simple statistics
* and predicted class distributions are stored in the given double array,
* which can be obtained by getSimpleStats() and getDistributions().<br>
*
* @param index the given index, assuming correct
* @param insts the dataset to be covered by the rule
* @param stats the given double array to hold stats, side-effected
* @param dist the given array to hold class distributions, side-effected
* if null, the distribution is not necessary
* @return the instances covered and not covered by the rule
*/
private Instances[] computeSimpleStats(int index, Instances insts,
double[] stats, double[] dist){
Rule rule = (Rule)m_Ruleset.elementAt(index);
Instances[] data = new Instances[2];
data[0] = new Instances(insts, insts.numInstances());
data[1] = new Instances(insts, insts.numInstances());
for(int i=0; i<insts.numInstances(); i++){
Instance datum = insts.instance(i);
double weight = datum.weight();
if(rule.covers(datum)){
data[0].add(datum); // Covered by this rule
stats[0] += weight; // Coverage
if((int)datum.classValue() == (int)rule.getConsequent())
stats[2] += weight; // True positives
else
stats[4] += weight; // False positives
if(dist != null)
dist[(int)datum.classValue()] += weight;
}
else{
data[1].add(datum); // Not covered by this rule
stats[1] += weight;
if((int)datum.classValue() != (int)rule.getConsequent())
stats[3] += weight; // True negatives
else
stats[5] += weight; // False negatives
}
}
return data;
}
/**
* Add a rule to the ruleset and update the stats
*
* @param the rule to be added
*/
public void addAndUpdate(Rule lastRule){
if(m_Ruleset == null)
m_Ruleset = new FastVector();
m_Ruleset.addElement(lastRule);
Instances data = (m_Filtered == null) ?
m_Data : ((Instances[])m_Filtered.lastElement())[1];
double[] stats = new double[6];
double[] classCounts = new double[m_Data.classAttribute().numValues()];
Instances[] filtered =
computeSimpleStats(m_Ruleset.size()-1, data, stats, classCounts);
if(m_Filtered == null)
m_Filtered = new FastVector();
m_Filtered.addElement(filtered);
if(m_SimpleStats == null)
m_SimpleStats = new FastVector();
m_SimpleStats.addElement(stats);
if(m_Distributions == null)
m_Distributions = new FastVector();
m_Distributions.addElement(classCounts);
}
/**
* Subset description length: <br>
* S(t,k,p) = -k*log2(p)-(n-k)log2(1-p)
*
* Details see Quilan: "MDL and categorical theories (Continued)",ML95
*
* @param t the number of elements in a known set
* @param k the number of elements in a subset
* @param p the expected proportion of subset known by recipient
*/
public static double subsetDL(double t, double k, double p){
double rt = Utils.gr(p, 0.0) ? (- k*Utils.log2(p)) : 0.0;
rt -= (t-k)*Utils.log2(1-p);
return rt;
}
/**
* The description length of the theory for a given rule. Computed as:<br>
* 0.5* [||k||+ S(t, k, k/t)]<br>
* where k is the number of antecedents of the rule; t is the total
* possible antecedents that could appear in a rule; ||K|| is the
* universal prior for k , log2*(k) and S(t,k,p) = -k*log2(p)-(n-k)log2(1-p)
* is the subset encoding length.<p>
*
* Details see Quilan: "MDL and categorical theories (Continued)",ML95
*
* @param index the index of the given rule (assuming correct)
* @exception if index out of range or object not initialized yet
* @return the theory DL, weighted if weight != 1.0
*/
public double theoryDL(int index){
double k = ((Rule)m_Ruleset.elementAt(index)).size();
if(k == 0)
return 0.0;
double tdl = Utils.log2(k);
if(k > 1) // Approximation
tdl += 2.0 * Utils.log2(tdl); // of log2 star
tdl += subsetDL(m_Total, k, k/m_Total);
//System.out.println("!!!theory: "+MDL_THEORY_WEIGHT * REDUNDANCY_FACTOR * tdl);
return MDL_THEORY_WEIGHT * REDUNDANCY_FACTOR * tdl;
}
/**
* The description length of data given the parameters of the data
* based on the ruleset. <p>
* Details see Quinlan: "MDL and categorical theories (Continued)",ML95<p>
*
* @param expFPOverErr expected FP/(FP+FN)
* @param cover coverage
* @param uncover uncoverage
* @param fp False Positive
* @param fn False Negative
*/
public static double dataDL(double expFPOverErr, double cover,
double uncover, double fp, double fn){
double totalBits = Utils.log2(cover+uncover+1.0); // how many data?
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -