📄 bvdecompose.java
字号:
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* BVDecompose.java
* Copyright (C) 1999 Len Trigg
*
*/
package weka.classifiers;
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.Reader;
import java.util.Enumeration;
import java.util.Random;
import java.util.Vector;
import weka.core.Attribute;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.Utils;
/**
* Class for performing a Bias-Variance decomposition on any classifier
* using the method specified in:<p>
*
* R. Kohavi & D. Wolpert (1996), <i>Bias plus variance decomposition for
* zero-one loss functions</i>, in Proc. of the Thirteenth International
* Machine Learning Conference (ICML96)
* <a href="http://robotics.stanford.edu/~ronnyk/biasVar.ps">
* download postscript</a>.<p>
*
* Valid options are:<p>
*
* -D <br>
* Turn on debugging output.<p>
*
* -W classname <br>
* Specify the full class name of a learner to perform the
* decomposition on (required).<p>
*
* -t filename <br>
* Set the arff file to use for the decomposition (required).<p>
*
* -T num <br>
* Specify the number of instances in the training pool (default 100).<p>
*
* -c num <br>
* Specify the index of the class attribute (default last).<p>
*
* -x num <br>
* Set the number of train iterations (default 50). <p>
*
* -s num <br>
* Set the seed for the dataset randomisation (default 1). <p>
*
* Options after -- are passed to the designated sub-learner. <p>
*
* @author Len Trigg (trigg@cs.waikato.ac.nz)
* @version $Revision$
*/
public class BVDecompose implements OptionHandler {
/** Debugging mode, gives extra output if true */
protected boolean m_Debug;
/** An instantiated base classifier used for getting and testing options. */
protected Classifier m_Classifier = new weka.classifiers.rules.ZeroR();
/** The options to be passed to the base classifier. */
protected String [] m_ClassifierOptions;
/** The number of train iterations */
protected int m_TrainIterations = 50;
/** The name of the data file used for the decomposition */
protected String m_DataFileName;
/** The index of the class attribute */
protected int m_ClassIndex = -1;
/** The random number seed */
protected int m_Seed = 1;
/** The calculated bias (squared) */
protected double m_Bias;
/** The calculated variance */
protected double m_Variance;
/** The calculated sigma (squared) */
protected double m_Sigma;
/** The error rate */
protected double m_Error;
/** The number of instances used in the training pool */
protected int m_TrainPoolSize = 100;
/**
* Returns an enumeration describing the available options.
*
* @return an enumeration of all the available options.
*/
public Enumeration listOptions() {
Vector newVector = new Vector(7);
newVector.addElement(new Option(
"\tThe index of the class attribute.\n"+
"\t(default last)",
"c", 1, "-c <class index>"));
newVector.addElement(new Option(
"\tThe name of the arff file used for the decomposition.",
"t", 1, "-t <name of arff file>"));
newVector.addElement(new Option(
"\tThe number of instances placed in the training pool.\n"
+ "\tThe remainder will be used for testing. (default 100)",
"T", 1, "-T <training pool size>"));
newVector.addElement(new Option(
"\tThe random number seed used.",
"s", 1, "-s <seed>"));
newVector.addElement(new Option(
"\tThe number of training repetitions used.\n"
+"\t(default 50)",
"x", 1, "-x <num>"));
newVector.addElement(new Option(
"\tTurn on debugging output.",
"D", 0, "-D"));
newVector.addElement(new Option(
"\tFull class name of the learner used in the decomposition.\n"
+"\teg: weka.classifiers.bayes.NaiveBayes",
"W", 1, "-W <classifier class name>"));
if ((m_Classifier != null) &&
(m_Classifier instanceof OptionHandler)) {
newVector.addElement(new Option(
"",
"", 0, "\nOptions specific to learner "
+ m_Classifier.getClass().getName()
+ ":"));
Enumeration em = ((OptionHandler)m_Classifier).listOptions();
while (em.hasMoreElements()) {
newVector.addElement(em.nextElement());
}
}
return newVector.elements();
}
/**
* Parses a given list of options. Valid options are:<p>
*
* -D <br>
* Turn on debugging output.<p>
*
* -W classname <br>
* Specify the full class name of a learner to perform the
* decomposition on (required).<p>
*
* -t filename <br>
* Set the arff file to use for the decomposition (required).<p>
*
* -T num <br>
* Specify the number of instances in the training pool (default 100).<p>
*
* -c num <br>
* Specify the index of the class attribute (default last).<p>
*
* -x num <br>
* Set the number of train iterations (default 50). <p>
*
* -s num <br>
* Set the seed for the dataset randomisation (default 1). <p>
*
* Options after -- are passed to the designated sub-learner. <p>
*
* @param options the list of options as an array of strings
* @exception Exception if an option is not supported
*/
public void setOptions(String[] options) throws Exception {
setDebug(Utils.getFlag('D', options));
String classIndex = Utils.getOption('c', options);
if (classIndex.length() != 0) {
if (classIndex.toLowerCase().equals("last")) {
setClassIndex(0);
} else if (classIndex.toLowerCase().equals("first")) {
setClassIndex(1);
} else {
setClassIndex(Integer.parseInt(classIndex));
}
} else {
setClassIndex(0);
}
String trainIterations = Utils.getOption('x', options);
if (trainIterations.length() != 0) {
setTrainIterations(Integer.parseInt(trainIterations));
} else {
setTrainIterations(50);
}
String trainPoolSize = Utils.getOption('T', options);
if (trainPoolSize.length() != 0) {
setTrainPoolSize(Integer.parseInt(trainPoolSize));
} else {
setTrainPoolSize(100);
}
String seedString = Utils.getOption('s', options);
if (seedString.length() != 0) {
setSeed(Integer.parseInt(seedString));
} else {
setSeed(1);
}
String dataFile = Utils.getOption('t', options);
if (dataFile.length() == 0) {
throw new Exception("An arff file must be specified"
+ " with the -t option.");
}
setDataFileName(dataFile);
String classifierName = Utils.getOption('W', options);
if (classifierName.length() == 0) {
throw new Exception("A learner must be specified with the -W option.");
}
setClassifier(Classifier.forName(classifierName,
Utils.partitionOptions(options)));
}
/**
* Gets the current settings of the CheckClassifier.
*
* @return an array of strings suitable for passing to setOptions
*/
public String [] getOptions() {
String [] classifierOptions = new String [0];
if ((m_Classifier != null) &&
(m_Classifier instanceof OptionHandler)) {
classifierOptions = ((OptionHandler)m_Classifier).getOptions();
}
String [] options = new String [classifierOptions.length + 14];
int current = 0;
if (getDebug()) {
options[current++] = "-D";
}
options[current++] = "-c"; options[current++] = "" + getClassIndex();
options[current++] = "-x"; options[current++] = "" + getTrainIterations();
options[current++] = "-T"; options[current++] = "" + getTrainPoolSize();
options[current++] = "-s"; options[current++] = "" + getSeed();
if (getDataFileName() != null) {
options[current++] = "-t"; options[current++] = "" + getDataFileName();
}
if (getClassifier() != null) {
options[current++] = "-W";
options[current++] = getClassifier().getClass().getName();
}
options[current++] = "--";
System.arraycopy(classifierOptions, 0, options, current,
classifierOptions.length);
current += classifierOptions.length;
while (current < options.length) {
options[current++] = "";
}
return options;
}
/**
* Get the number of instances in the training pool.
*
* @return number of instances in the training pool.
*/
public int getTrainPoolSize() {
return m_TrainPoolSize;
}
/**
* Set the number of instances in the training pool.
*
* @param numTrain number of instances in the training pool.
*/
public void setTrainPoolSize(int numTrain) {
m_TrainPoolSize = numTrain;
}
/**
* Set the classifiers being analysed
*
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -