📄 racedincrementallogitboost.java
字号:
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* RacedIncrementalLogitBoost.java
* Copyright (C) 2002 Richard Kirkby, Eibe Frank
*
*/
package weka.classifiers.meta;
import java.io.Serializable;
import java.util.Enumeration;
import java.util.Random;
import java.util.Vector;
import weka.classifiers.Classifier;
import weka.classifiers.Evaluation;
import weka.classifiers.UpdateableClassifier;
import weka.classifiers.rules.ZeroR;
import weka.core.Attribute;
import weka.core.FastVector;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.SelectedTag;
import weka.core.Tag;
import weka.core.Utils;
import weka.core.WeightedInstancesHandler;
/**
* Classifier for incremental learning of large datasets by way of racing logit-boosted committees.
*
* Valid options are:<p>
*
* -C num <br>
* Set the minimum chunk size (default 500). <p>
*
* -M num <br>
* Set the maximum chunk size (default 8000). <p>
*
* -V num <br>
* Set the validation set size (default 5000). <p>
*
* -D <br>
* Turn on debugging output.<p>
*
* -W classname <br>
* Specify the full class name of a weak learner as the basis for
* boosting (required).<p>
*
* -Q <br>
* Use resampling instead of reweighting.<p>
*
* -S seed <br>
* Random number seed for resampling (default 1).<p>
*
* -P type <br>
* The type of pruning to use. <p>
*
* Options after -- are passed to the designated learner.<p>
*
* @author Richard Kirkby (rkirkby@cs.waikato.ac.nz)
* @author Eibe Frank (eibe@cs.waikato.ac.nz)
* @version $Revision$
*/
public class RacedIncrementalLogitBoost extends Classifier
implements OptionHandler, UpdateableClassifier {
/** The pruning types */
public static final int PRUNETYPE_NONE = 0;
public static final int PRUNETYPE_LOGLIKELIHOOD = 1;
public static final Tag [] TAGS_PRUNETYPE = {
new Tag(PRUNETYPE_NONE, "No pruning"),
new Tag(PRUNETYPE_LOGLIKELIHOOD, "Log likelihood pruning")
};
/** The model base classifier to use */
protected Classifier m_Classifier = new weka.classifiers.trees.DecisionStump();
/** The committees */
protected FastVector m_committees;
/** The pruning type used */
protected int m_PruningType = PRUNETYPE_LOGLIKELIHOOD;
/** Whether to use resampling */
protected boolean m_UseResampling = false;
/** Seed for boosting with resampling. */
protected int m_Seed = 1;
/** The number of classes */
protected int m_NumClasses;
/** A threshold for responses (Friedman suggests between 2 and 4) */
protected static final double Z_MAX = 4;
/** Dummy dataset with a numeric class */
protected Instances m_NumericClassData;
/** The actual class attribute (for getting class names) */
protected Attribute m_ClassAttribute;
/** The minimum chunk size used for training */
protected int m_minChunkSize = 500;
/** The maimum chunk size used for training */
protected int m_maxChunkSize = 8000;
/** The size of the validation set */
protected int m_validationChunkSize = 5000;
/** The number of instances consumed */
protected int m_numInstancesConsumed;
/** The instances used for validation */
protected Instances m_validationSet;
/** The instances currently in memory for training */
protected Instances m_currentSet;
/** The current best committee */
protected Committee m_bestCommittee;
/** The default scheme used when committees aren't ready */
protected ZeroR m_zeroR = null;
/** Whether the validation set has recently been changed */
protected boolean m_validationSetChanged;
/** The maximum number of instances required for processing */
protected int m_maxBatchSizeRequired;
/** Whether to output debug messages */
protected boolean m_Debug = false;
/** The random number generator used */
protected Random m_RandomInstance = null;
/* Class representing a committee of LogitBoosted models */
protected class Committee implements Serializable {
protected int m_chunkSize;
protected int m_instancesConsumed; // number eaten from m_currentSet
protected FastVector m_models;
protected double m_lastValidationError;
protected double m_lastLogLikelihood;
protected boolean m_modelHasChanged;
protected boolean m_modelHasChangedLL;
protected double[][] m_validationFs;
protected double[][] m_newValidationFs;
/* constructor */
public Committee(int chunkSize) {
m_chunkSize = chunkSize;
m_instancesConsumed = 0;
m_models = new FastVector();
m_lastValidationError = 1.0;
m_lastLogLikelihood = Double.MAX_VALUE;
m_modelHasChanged = true;
m_modelHasChangedLL = true;
m_validationFs = new double[m_validationChunkSize][m_NumClasses];
m_newValidationFs = new double[m_validationChunkSize][m_NumClasses];
}
/* update the committee */
public boolean update() throws Exception {
boolean hasChanged = false;
while (m_currentSet.numInstances() - m_instancesConsumed >= m_chunkSize) {
Classifier[] newModel = boost(new Instances(m_currentSet, m_instancesConsumed, m_chunkSize));
for (int i=0; i<m_validationSet.numInstances(); i++) {
m_newValidationFs[i] = updateFS(m_validationSet.instance(i), newModel, m_validationFs[i]);
}
m_models.addElement(newModel);
m_instancesConsumed += m_chunkSize;
hasChanged = true;
}
if (hasChanged) {
m_modelHasChanged = true;
m_modelHasChangedLL = true;
}
return hasChanged;
}
/* reset consumation counts */
public void resetConsumed() {
m_instancesConsumed = 0;
}
/* remove the last model from the committee */
public void pruneLastModel() {
if (m_models.size() > 0) {
m_models.removeElementAt(m_models.size()-1);
m_modelHasChanged = true;
m_modelHasChangedLL = true;
}
}
/* decide to keep the last model in the committee */
public void keepLastModel() throws Exception {
m_validationFs = m_newValidationFs;
m_newValidationFs = new double[m_validationChunkSize][m_NumClasses];
m_modelHasChanged = true;
m_modelHasChangedLL = true;
}
/* calculate the log likelihood on the validation data */
public double logLikelihood() throws Exception {
if (m_modelHasChangedLL) {
Instance inst;
double llsum = 0.0;
for (int i=0; i<m_validationSet.numInstances(); i++) {
inst = m_validationSet.instance(i);
llsum += (logLikelihood(m_validationFs[i],(int) inst.classValue()));
}
m_lastLogLikelihood = llsum / (double) m_validationSet.numInstances();
m_modelHasChangedLL = false;
}
return m_lastLogLikelihood;
}
/* calculate the log likelihood on the validation data after adding the last model */
public double logLikelihoodAfter() throws Exception {
Instance inst;
double llsum = 0.0;
for (int i=0; i<m_validationSet.numInstances(); i++) {
inst = m_validationSet.instance(i);
llsum += (logLikelihood(m_newValidationFs[i],(int) inst.classValue()));
}
return llsum / (double) m_validationSet.numInstances();
}
/* calculates the log likelihood of an instance */
private double logLikelihood(double[] Fs, int classIndex) throws Exception {
return -Math.log(distributionForInstance(Fs)[classIndex]);
}
/* calculates the validation error of the committee */
public double validationError() throws Exception {
if (m_modelHasChanged) {
Instance inst;
int numIncorrect = 0;
for (int i=0; i<m_validationSet.numInstances(); i++) {
inst = m_validationSet.instance(i);
if (classifyInstance(m_validationFs[i]) != inst.classValue())
numIncorrect++;
}
m_lastValidationError = (double) numIncorrect / (double) m_validationSet.numInstances();
m_modelHasChanged = false;
}
return m_lastValidationError;
}
/* returns the chunk size used by the committee */
public int chunkSize() {
return m_chunkSize;
}
/* returns the number of models in the committee */
public int committeeSize() {
return m_models.size();
}
/* classifies an instance (given Fs values) with the committee */
public double classifyInstance(double[] Fs) throws Exception {
double [] dist = distributionForInstance(Fs);
double max = 0;
int maxIndex = 0;
for (int i = 0; i < dist.length; i++) {
if (dist[i] > max) {
maxIndex = i;
max = dist[i];
}
}
if (max > 0) {
return maxIndex;
} else {
return Instance.missingValue();
}
}
/* classifies an instance with the committee */
public double classifyInstance(Instance instance) throws Exception {
double [] dist = distributionForInstance(instance);
switch (instance.classAttribute().type()) {
case Attribute.NOMINAL:
double max = 0;
int maxIndex = 0;
for (int i = 0; i < dist.length; i++) {
if (dist[i] > max) {
maxIndex = i;
max = dist[i];
}
}
if (max > 0) {
return maxIndex;
} else {
return Instance.missingValue();
}
case Attribute.NUMERIC:
return dist[0];
default:
return Instance.missingValue();
}
}
/* returns the distribution the committee generates for an instance (given Fs values) */
public double[] distributionForInstance(double[] Fs) throws Exception {
double [] distribution = new double [m_NumClasses];
for (int j = 0; j < m_NumClasses; j++) {
distribution[j] = RtoP(Fs, j);
}
return distribution;
}
/* updates the Fs values given a new model in the committee */
public double[] updateFS(Instance instance, Classifier[] newModel, double[] Fs) throws Exception {
instance = (Instance)instance.copy();
instance.setDataset(m_NumericClassData);
double [] Fi = new double [m_NumClasses];
double Fsum = 0;
for (int j = 0; j < m_NumClasses; j++) {
Fi[j] = newModel[j].classifyInstance(instance);
Fsum += Fi[j];
}
Fsum /= m_NumClasses;
double[] newFs = new double[Fs.length];
for (int j = 0; j < m_NumClasses; j++) {
newFs[j] = Fs[j] + ((Fi[j] - Fsum) * (m_NumClasses - 1) / m_NumClasses);
}
return newFs;
}
/* returns the distribution the committee generates for an instance */
public double[] distributionForInstance(Instance instance) throws Exception {
instance = (Instance)instance.copy();
instance.setDataset(m_NumericClassData);
double [] Fs = new double [m_NumClasses];
for (int i = 0; i < m_models.size(); i++) {
double [] Fi = new double [m_NumClasses];
double Fsum = 0;
Classifier[] model = (Classifier[]) m_models.elementAt(i);
for (int j = 0; j < m_NumClasses; j++) {
Fi[j] = model[j].classifyInstance(instance);
Fsum += Fi[j];
}
Fsum /= m_NumClasses;
for (int j = 0; j < m_NumClasses; j++) {
Fs[j] += (Fi[j] - Fsum) * (m_NumClasses - 1) / m_NumClasses;
}
}
double [] distribution = new double [m_NumClasses];
for (int j = 0; j < m_NumClasses; j++) {
distribution[j] = RtoP(Fs, j);
}
return distribution;
}
/* performs a boosting iteration, returning a new model for the committee */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -