📄 additiveregression.java
字号:
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* AdditiveRegression.java
* Copyright (C) 2000 Mark Hall
*
*/
package weka.classifiers.meta;
import java.util.Enumeration;
import java.util.Vector;
import weka.classifiers.Classifier;
import weka.classifiers.Evaluation;
import weka.classifiers.rules.ZeroR;
import weka.core.AdditionalMeasureProducer;
import weka.core.FastVector;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.UnsupportedClassTypeException;
import weka.core.Utils;
import weka.core.WeightedInstancesHandler;
/**
* Meta classifier that enhances the performance of a regression base
* classifier. Each iteration fits a model to the residuals left by the
* classifier on the previous iteration. Prediction is accomplished by
* adding the predictions of each classifier. Smoothing is accomplished
* through varying the shrinkage (learning rate) parameter. <p>
*
* For more information see: <p>
*
* Friedman, J.H. (1999). Stochastic Gradient Boosting. Technical Report
* Stanford University. http://www-stat.stanford.edu/~jhf/ftp/stobst.ps. <p>
*
* Valid options from the command line are: <p>
*
* -W classifierstring <br>
* Classifierstring should contain the full class name of a classifier
* followed by options to the classifier.
* (required).<p>
*
* -S shrinkage rate <br>
* Smaller values help prevent overfitting and have a smoothing effect
* (but increase learning time).
* (default = 1.0, ie no shrinkage). <p>
*
* -M max models <br>
* Set the maximum number of models to generate. Values <= 0 indicate
* no maximum, ie keep going until the reduction in error threshold is
* reached.
* (default = 10). <p>
*
* -D <br>
* Debugging output. <p>
*
* @author Mark Hall (mhall@cs.waikato.ac.nz)
* @version $Revision$
*/
public class AdditiveRegression extends Classifier
implements OptionHandler,
AdditionalMeasureProducer,
WeightedInstancesHandler {
/**
* Base classifier.
*/
protected Classifier m_Classifier = new weka.classifiers.trees.DecisionStump();
/**
* Class index.
*/
private int m_classIndex;
/**
* Shrinkage (Learning rate). Default = no shrinkage.
*/
protected double m_shrinkage = 1.0;
/**
* The list of iteratively generated models.
*/
private FastVector m_additiveModels = new FastVector();
/**
* Produce debugging output.
*/
private boolean m_debug = false;
/**
* Maximum number of models to produce. -1 indicates keep going until the error
* threshold is met.
*/
protected int m_maxModels = 10;
/**
* Returns a string describing this attribute evaluator
* @return a description of the evaluator suitable for
* displaying in the explorer/experimenter gui
*/
public String globalInfo() {
return " Meta classifier that enhances the performance of a regression "
+"base classifier. Each iteration fits a model to the residuals left "
+"by the classifier on the previous iteration. Prediction is "
+"accomplished by adding the predictions of each classifier. "
+"Reducing the shrinkage (learning rate) parameter helps prevent "
+"overfitting and has a smoothing effect but increases the learning "
+"time. For more information see: Friedman, J.H. (1999). Stochastic "
+"Gradient Boosting. Technical Report Stanford University. "
+"http://www-stat.stanford.edu/~jhf/ftp/stobst.ps.";
}
/**
* Default constructor specifying DecisionStump as the classifier
*/
public AdditiveRegression() {
this(new weka.classifiers.trees.DecisionStump());
}
/**
* Constructor which takes base classifier as argument.
*
* @param classifier the base classifier to use
*/
public AdditiveRegression(Classifier classifier) {
m_Classifier = classifier;
}
/**
* Returns an enumeration describing the available options.
*
* @return an enumeration of all the available options.
*/
public Enumeration listOptions() {
Vector newVector = new Vector(4);
newVector.addElement(new Option(
"\tFull class name of classifier to use, followed\n"
+ "\tby scheme options. (required)\n"
+ "\teg: \"weka.classifiers.bayes.NaiveBayes -D\"",
"W", 1, "-W <classifier specification>"));
newVector.addElement(new Option(
"\tSpecify shrinkage rate. "
+"(default=1.0, ie. no shrinkage)\n",
"S", 1, "-S"));
newVector.addElement(new Option(
"\tTurn on debugging output.",
"D", 0, "-D"));
newVector.addElement(new Option(
"\tSpecify max models to generate. "
+"(default = 10, ie. no max; keep going until error reduction threshold "
+"is reached)\n",
"M", 1, "-M"));
return newVector.elements();
}
/**
* Parses a given list of options. Valid options are:<p>
*
* -W classifierstring <br>
* Classifierstring should contain the full class name of a classifier
* followed by options to the classifier.
* (required).<p>
*
* -S shrinkage rate <br>
* Smaller values help prevent overfitting and have a smoothing effect
* (but increase learning time).
* (default = 1.0, ie. no shrinkage). <p>
*
* -D <br>
* Debugging output. <p>
*
* -M max models <br>
* Set the maximum number of models to generate. Values <= 0 indicate
* no maximum, ie keep going until the reduction in error threshold is
* reached.
* (default = 10). <p>
*
* @param options the list of options as an array of strings
* @exception Exception if an option is not supported
*/
public void setOptions(String[] options) throws Exception {
setDebug(Utils.getFlag('D', options));
String classifierString = Utils.getOption('W', options);
if (classifierString.length() == 0) {
throw new Exception("A classifier must be specified"
+ " with the -w option.");
}
String [] classifierSpec = Utils.splitOptions(classifierString);
if (classifierSpec.length == 0) {
throw new Exception("Invalid classifier specification string");
}
String classifierName = classifierSpec[0];
classifierSpec[0] = "";
setClassifier(Classifier.forName(classifierName, classifierSpec));
String optionString = Utils.getOption('S', options);
if (optionString.length() != 0) {
Double temp;
temp = Double.valueOf(optionString);
setShrinkage(temp.doubleValue());
}
optionString = Utils.getOption('M', options);
if (optionString.length() != 0) {
setMaxModels(Integer.parseInt(optionString));
}
Utils.checkForRemainingOptions(options);
}
/**
* Gets the current settings of the Classifier.
*
* @return an array of strings suitable for passing to setOptions
*/
public String [] getOptions() {
String [] options = new String [7];
int current = 0;
if (getDebug()) {
options[current++] = "-D";
}
options[current++] = "-W";
options[current++] = "" + getClassifierSpec();
options[current++] = "-S"; options[current++] = ""+getShrinkage();
options[current++] = "-M"; options[current++] = ""+getMaxModels();
while (current < options.length) {
options[current++] = "";
}
return options;
}
/**
* Returns the tip text for this property
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String debugTipText() {
return "Turn on debugging output";
}
/**
* Set whether debugging output is produced.
*
* @param d true if debugging output is to be produced
*/
public void setDebug(boolean d) {
m_debug = d;
}
/**
* Gets whether debugging has been turned on
*
* @return true if debugging has been turned on
*/
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -