📄 cvparameterselection.java
字号:
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* CVParameterSelection.java
* Copyright (C) 1999 Len Trigg
*
*/
package weka.classifiers.meta;
import java.io.Serializable;
import java.io.StreamTokenizer;
import java.io.StringReader;
import java.util.Enumeration;
import java.util.Random;
import java.util.Vector;
import weka.classifiers.Evaluation;
import weka.classifiers.RandomizableSingleClassifierEnhancer;
import weka.core.Drawable;
import weka.core.FastVector;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.Summarizable;
import weka.core.UnsupportedAttributeTypeException;
import weka.core.Utils;
/**
* Class for performing parameter selection by cross-validation for any
* classifier. For more information, see<p>
*
* R. Kohavi (1995). <i>Wrappers for Performance
* Enhancement and Oblivious Decision Graphs</i>. PhD
* Thesis. Department of Computer Science, Stanford University. <p>
*
* Valid options are:<p>
*
* -D <br>
* Turn on debugging output.<p>
*
* -W classname <br>
* Specify the full class name of classifier to perform cross-validation
* selection on.<p>
*
* -X num <br>
* Number of folds used for cross validation (default 10). <p>
*
* -S seed <br>
* Random number seed (default 1).<p>
*
* -P "N 1 5 10" <br>
* Sets an optimisation parameter for the classifier with name -N,
* lower bound 1, upper bound 5, and 10 optimisation steps.
* The upper bound may be the character 'A' or 'I' to substitute
* the number of attributes or instances in the training data,
* respectively.
* This parameter may be supplied more than once to optimise over
* several classifier options simultaneously. <p>
*
* Options after -- are passed to the designated sub-classifier. <p>
*
* @author Len Trigg (trigg@cs.waikato.ac.nz)
* @version $Revision$
*/
public class CVParameterSelection extends RandomizableSingleClassifierEnhancer
implements Drawable, Summarizable {
/*
* A data structure to hold values associated with a single
* cross-validation search parameter
*/
protected class CVParameter implements Serializable {
/** Char used to identify the option of interest */
private char m_ParamChar;
/** Lower bound for the CV search */
private double m_Lower;
/** Upper bound for the CV search */
private double m_Upper;
/** Increment during the search */
private double m_Steps;
/** The parameter value with the best performance */
private double m_ParamValue;
/** True if the parameter should be added at the end of the argument list */
private boolean m_AddAtEnd;
/** True if the parameter should be rounded to an integer */
private boolean m_RoundParam;
/**
* Constructs a CVParameter.
*/
public CVParameter(String param) throws Exception {
// Tokenize the string into it's parts
StreamTokenizer st = new StreamTokenizer(new StringReader(param));
if (st.nextToken() != StreamTokenizer.TT_WORD) {
throw new Exception("CVParameter " + param
+ ": Character parameter identifier expected");
}
m_ParamChar = st.sval.charAt(0);
if (st.nextToken() != StreamTokenizer.TT_NUMBER) {
throw new Exception("CVParameter " + param
+ ": Numeric lower bound expected");
}
m_Lower = st.nval;
if (st.nextToken() == StreamTokenizer.TT_NUMBER) {
m_Upper = st.nval;
if (m_Upper < m_Lower) {
throw new Exception("CVParameter " + param
+ ": Upper bound is less than lower bound");
}
} else if (st.ttype == StreamTokenizer.TT_WORD) {
if (st.sval.toUpperCase().charAt(0) == 'A') {
m_Upper = m_Lower - 1;
} else if (st.sval.toUpperCase().charAt(0) == 'I') {
m_Upper = m_Lower - 2;
} else {
throw new Exception("CVParameter " + param
+ ": Upper bound must be numeric, or 'A' or 'N'");
}
} else {
throw new Exception("CVParameter " + param
+ ": Upper bound must be numeric, or 'A' or 'N'");
}
if (st.nextToken() != StreamTokenizer.TT_NUMBER) {
throw new Exception("CVParameter " + param
+ ": Numeric number of steps expected");
}
m_Steps = st.nval;
if (st.nextToken() == StreamTokenizer.TT_WORD) {
if (st.sval.toUpperCase().charAt(0) == 'R') {
m_RoundParam = true;
}
}
}
/**
* Returns a CVParameter as a string.
*/
public String toString() {
String result = m_ParamChar + " " + m_Lower + " ";
switch ((int)(m_Lower - m_Upper + 0.5)) {
case 1:
result += "A";
break;
case 2:
result += "I";
break;
default:
result += m_Upper;
break;
}
result += " " + m_Steps;
if (m_RoundParam) {
result += " R";
}
return result;
}
}
/**
* The base classifier options (not including those being set
* by cross-validation)
*/
protected String [] m_ClassifierOptions;
/** The set of all classifier options as determined by cross-validation */
protected String [] m_BestClassifierOptions;
/** The set of all options at initialization time. So that getOptions
can return this. */
protected String [] m_InitOptions;
/** The cross-validated performance of the best options */
protected double m_BestPerformance;
/** The set of parameters to cross-validate over */
protected FastVector m_CVParams = new FastVector();
/** The number of attributes in the data */
protected int m_NumAttributes;
/** The number of instances in a training fold */
protected int m_TrainFoldSize;
/** The number of folds used in cross-validation */
protected int m_NumFolds = 10;
/**
* Create the options array to pass to the classifier. The parameter
* values and positions are taken from m_ClassifierOptions and
* m_CVParams.
*
* @return the options array
*/
protected String [] createOptions() {
String [] options = new String [m_ClassifierOptions.length
+ 2 * m_CVParams.size()];
int start = 0, end = options.length;
// Add the cross-validation parameters and their values
for (int i = 0; i < m_CVParams.size(); i++) {
CVParameter cvParam = (CVParameter)m_CVParams.elementAt(i);
double paramValue = cvParam.m_ParamValue;
if (cvParam.m_RoundParam) {
paramValue = (double)((int) (paramValue + 0.5));
}
if (cvParam.m_AddAtEnd) {
options[--end] = "" +
Utils.doubleToString(paramValue,4);
options[--end] = "-" + cvParam.m_ParamChar;
} else {
options[start++] = "-" + cvParam.m_ParamChar;
options[start++] = ""
+ Utils.doubleToString(paramValue,4);
}
}
// Add the static parameters
System.arraycopy(m_ClassifierOptions, 0,
options, start,
m_ClassifierOptions.length);
return options;
}
/**
* Finds the best parameter combination. (recursive for each parameter
* being optimised).
*
* @param depth the index of the parameter to be optimised at this level
* @exception Exception if an error occurs
*/
protected void findParamsByCrossValidation(int depth, Instances trainData,
Random random)
throws Exception {
if (depth < m_CVParams.size()) {
CVParameter cvParam = (CVParameter)m_CVParams.elementAt(depth);
double upper;
switch ((int)(cvParam.m_Lower - cvParam.m_Upper + 0.5)) {
case 1:
upper = m_NumAttributes;
break;
case 2:
upper = m_TrainFoldSize;
break;
default:
upper = cvParam.m_Upper;
break;
}
double increment = (upper - cvParam.m_Lower) / (cvParam.m_Steps - 1);
for(cvParam.m_ParamValue = cvParam.m_Lower;
cvParam.m_ParamValue <= upper;
cvParam.m_ParamValue += increment) {
findParamsByCrossValidation(depth + 1, trainData, random);
}
} else {
Evaluation evaluation = new Evaluation(trainData);
// Set the classifier options
String [] options = createOptions();
if (m_Debug) {
System.err.print("Setting options for "
+ m_Classifier.getClass().getName() + ":");
for (int i = 0; i < options.length; i++) {
System.err.print(" " + options[i]);
}
System.err.println("");
}
((OptionHandler)m_Classifier).setOptions(options);
for (int j = 0; j < m_NumFolds; j++) {
Instances train = trainData.trainCV(m_NumFolds, j, random);
Instances test = trainData.testCV(m_NumFolds, j);
m_Classifier.buildClassifier(train);
evaluation.setPriors(train);
evaluation.evaluateModel(m_Classifier, test);
}
double error = evaluation.errorRate();
if (m_Debug) {
System.err.println("Cross-validated error rate: "
+ Utils.doubleToString(error, 6, 4));
}
if ((m_BestPerformance == -99) || (error < m_BestPerformance)) {
m_BestPerformance = error;
m_BestClassifierOptions = createOptions();
}
}
}
/**
* Returns a string describing this classifier
* @return a description of the classifier suitable for
* displaying in the explorer/experimenter gui
*/
public String globalInfo() {
return "Class for performing parameter selection by cross-validation "+
"for any classifier. For more information, see:\n"+
"R. Kohavi (1995). Wrappers for Performance "+
"Enhancement and Oblivious Decision Graphs. PhD "+
"Thesis. Department of Computer Science, Stanford University.";
}
/**
* Returns an enumeration describing the available options.
*
* @return an enumeration of all the available options.
*/
public Enumeration listOptions() {
Vector newVector = new Vector(2);
newVector.addElement(new Option(
"\tNumber of folds used for cross validation (default 10).",
"X", 1, "-X <number of folds>"));
newVector.addElement(new Option(
"\tClassifier parameter options.\n"
+ "\teg: \"N 1 5 10\" Sets an optimisation parameter for the\n"
+ "\tclassifier with name -N, with lower bound 1, upper bound\n"
+ "\t5, and 10 optimisation steps. The upper bound may be the\n"
+ "\tcharacter 'A' or 'I' to substitute the number of\n"
+ "\tattributes or instances in the training data,\n"
+ "\trespectively. This parameter may be supplied more than\n"
+ "\tonce to optimise over several classifier options\n"
+ "\tsimultaneously.",
"P", 1, "-P <classifier parameter>"));
Enumeration em = super.listOptions();
while (em.hasMoreElements()) {
newVector.addElement(em.nextElement());
}
return newVector.elements();
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -