📄 metacost.java
字号:
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* MetaCost.java
* Copyright (C) 2002 University of Waikato
*
*/
package weka.classifiers.meta;
import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.util.Enumeration;
import java.util.Vector;
import weka.classifiers.Classifier;
import weka.classifiers.CostMatrix;
import weka.classifiers.Evaluation;
import weka.classifiers.RandomizableSingleClassifierEnhancer;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.SelectedTag;
import weka.core.Tag;
import weka.core.UnsupportedClassTypeException;
import weka.core.Utils;
/**
* This metaclassifier makes its base classifier cost-sensitive using the
* method specified in <p>
*
* Pedro Domingos (1999). <i>MetaCost: A general method for making classifiers
* cost-sensitive</i>, Proceedings of the Fifth International Conference on
* Knowledge Discovery and Data Mining, pp. 155-164. Also available online at
* <a href="http://www.cs.washington.edu/homes/pedrod/kdd99.ps.gz">
* http://www.cs.washington.edu/homes/pedrod/kdd99.ps.gz</a>. <p>
*
* This classifier should produce similar results to one created by
* passing the base learner to Bagging, which is in turn passed to a
* CostSensitiveClassifier operating on minimum expected cost. The difference
* is that MetaCost produces a single cost-sensitive classifier of the
* base learner, giving the benefits of fast classification and interpretable
* output (if the base learner itself is interpretable). This implementation
* uses all bagging iterations when reclassifying training data (the MetaCost
* paper reports a marginal improvement when only those iterations containing
* each training instance are used in reclassifying that instance). <p>
*
* Valid options are:<p>
*
* -W classname <br>
* Specify the full class name of a classifier (required).<p>
*
* -C cost file <br>
* File name of a cost matrix to use. If this is not supplied, a cost
* matrix will be loaded on demand. The name of the on-demand file
* is the relation name of the training data plus ".cost", and the
* path to the on-demand file is specified with the -N option.<p>
*
* -N directory <br>
* Name of a directory to search for cost files when loading costs on demand
* (default current directory). <p>
*
* -I num <br>
* Set the number of bagging iterations (default 10). <p>
*
* -S seed <br>
* Random number seed used when reweighting by resampling (default 1).<p>
*
* -P num <br>
* Size of each bag, as a percentage of the training size (default 100). <p>
*
* Options after -- are passed to the designated classifier.<p>
*
* @author Len Trigg (len@reeltwo.com)
* @version $Revision$
*/
public class MetaCost extends RandomizableSingleClassifierEnhancer {
/* Specify possible sources of the cost matrix */
public static final int MATRIX_ON_DEMAND = 1;
public static final int MATRIX_SUPPLIED = 2;
public static final Tag [] TAGS_MATRIX_SOURCE = {
new Tag(MATRIX_ON_DEMAND, "Load cost matrix on demand"),
new Tag(MATRIX_SUPPLIED, "Use explicit cost matrix")
};
/** Indicates the current cost matrix source */
protected int m_MatrixSource = MATRIX_ON_DEMAND;
/**
* The directory used when loading cost files on demand, null indicates
* current directory
*/
protected File m_OnDemandDirectory = new File(System.getProperty("user.dir"));
/** The name of the cost file, for command line options */
protected String m_CostFile;
/** The cost matrix */
protected CostMatrix m_CostMatrix = new CostMatrix(1);
/** The number of iterations. */
protected int m_NumIterations = 10;
/** The size of each bag sample, as a percentage of the training size */
protected int m_BagSizePercent = 100;
/**
* Returns a string describing classifier
* @return a description suitable for
* displaying in the explorer/experimenter gui
*/
public String globalInfo() {
return "This metaclassifier makes its base classifier cost-sensitive using the "
+ "method specified in\n\n"
+ "Pedro Domingos (1999) \"MetaCost: A general method for making classifiers "
+ "cost-sensitive\", Proceedings of the Fifth International Conference on "
+ "Knowledge Discovery and Data Mining, pp 155-164.\n\n"
+ "This classifier should produce similar results to one created by "
+ "passing the base learner to Bagging, which is in turn passed to a "
+ "CostSensitiveClassifier operating on minimum expected cost. The difference "
+ "is that MetaCost produces a single cost-sensitive classifier of the "
+ "base learner, giving the benefits of fast classification and interpretable "
+ "output (if the base learner itself is interpretable). This implementation "
+ "uses all bagging iterations when reclassifying training data (the MetaCost "
+ "paper reports a marginal improvement when only those iterations containing "
+ "each training instance are used in reclassifying that instance).";
}
/**
* Returns an enumeration describing the available options.
*
* @return an enumeration of all the available options.
*/
public Enumeration listOptions() {
Vector newVector = new Vector(6);
newVector.addElement(new Option(
"\tNumber of bagging iterations.\n"
+ "\t(default 10)",
"I", 1, "-I <num>"));
newVector.addElement(new Option(
"\tFile name of a cost matrix to use. If this is not supplied,\n"
+"\ta cost matrix will be loaded on demand. The name of the\n"
+"\ton-demand file is the relation name of the training data\n"
+"\tplus \".cost\", and the path to the on-demand file is\n"
+"\tspecified with the -N option.",
"C", 1, "-C <cost file name>"));
newVector.addElement(new Option(
"\tName of a directory to search for cost files when loading\n"
+"\tcosts on demand (default current directory).",
"N", 1, "-N <directory>"));
newVector.addElement(new Option(
"\tSize of each bag, as a percentage of the\n"
+ "\ttraining set size. (default 100)",
"P", 1, "-P"));
Enumeration em = super.listOptions();
while (em.hasMoreElements()) {
newVector.addElement(em.nextElement());
}
return newVector.elements();
}
/**
* Parses a given list of options. Valid options are:<p>
*
* -W classname <br>
* Specify the full class name of a classifier (required).<p>
*
* -C cost file <br>
* File name of a cost matrix to use. If this is not supplied, a cost
* matrix will be loaded on demand. The name of the on-demand file
* is the relation name of the training data plus ".cost", and the
* path to the on-demand file is specified with the -N option.<p>
*
* -N directory <br>
* Name of a directory to search for cost files when loading costs on demand
* (default current directory). <p>
*
* -I num <br>
* Set the number of bagging iterations (default 10). <p>
*
* -S seed <br>
* Random number seed used when reweighting by resampling (default 1).<p>
*
* -P num <br>
* Size of each bag, as a percentage of the training size (default 100). <p>
*
* Options after -- are passed to the designated classifier.<p>
*
* @param options the list of options as an array of strings
* @exception Exception if an option is not supported
*/
public void setOptions(String[] options) throws Exception {
String bagIterations = Utils.getOption('I', options);
if (bagIterations.length() != 0) {
setNumIterations(Integer.parseInt(bagIterations));
} else {
setNumIterations(10);
}
String bagSize = Utils.getOption('P', options);
if (bagSize.length() != 0) {
setBagSizePercent(Integer.parseInt(bagSize));
} else {
setBagSizePercent(100);
}
String costFile = Utils.getOption('C', options);
if (costFile.length() != 0) {
setCostMatrix(new CostMatrix(new BufferedReader(
new FileReader(costFile))));
setCostMatrixSource(new SelectedTag(MATRIX_SUPPLIED,
TAGS_MATRIX_SOURCE));
m_CostFile = costFile;
} else {
setCostMatrixSource(new SelectedTag(MATRIX_ON_DEMAND,
TAGS_MATRIX_SOURCE));
}
String demandDir = Utils.getOption('N', options);
if (demandDir.length() != 0) {
setOnDemandDirectory(new File(demandDir));
}
super.setOptions(options);
}
/**
* Gets the current settings of the Classifier.
*
* @return an array of strings suitable for passing to setOptions
*/
public String [] getOptions() {
String [] superOptions = super.getOptions();
String [] options;
if ((m_MatrixSource == MATRIX_SUPPLIED) && (m_CostFile == null)) {
options = new String [superOptions.length + 4];
} else {
options = new String [superOptions.length + 6];
}
int current = 0;
if (m_MatrixSource == MATRIX_SUPPLIED) {
if (m_CostFile != null) {
options[current++] = "-C";
options[current++] = "" + m_CostFile;
}
} else {
options[current++] = "-N";
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -