📄 decorate.java
字号:
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* Decorate.java
* Copyright (C) 2002 Prem Melville
*
*/
package weka.classifiers.meta;
import java.util.Enumeration;
import java.util.Random;
import java.util.Vector;
import weka.classifiers.Classifier;
import weka.classifiers.Evaluation;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.UnsupportedAttributeTypeException;
import weka.core.UnsupportedClassTypeException;
import weka.core.Utils;
/**
* DECORATE is a meta-learner for building diverse ensembles of
* classifiers by using specially constructed artificial training
* examples. Comprehensive experiments have demonstrated that this
* technique is consistently more accurate than the base classifier,
* Bagging and Random Forests. Decorate also obtains higher accuracy than
* Boosting on small training sets, and achieves comparable performance
* on larger training sets. For more
* details see: <p>
*
* Prem Melville and Raymond J. Mooney. <i>Constructing diverse
* classifier ensembles using artificial training examples.</i>
* Proceedings of the Seventeeth International Joint Conference on
* Artificial Intelligence 2003.<p>
*
* Prem Melville and Raymond J. Mooney. <i>Creating diversity in ensembles using artificial data.</i>
* Submitted.<BR><BR>
*
* Valid options are:<p>
*
* -D <br>
* Turn on debugging output.<p>
*
* -W classname <br>
* Specify the full class name of a weak classifier as the basis for
* Decorate (default weka.classifiers.trees.J48()).<p>
*
* -I num <br>
* Specify the desired size of the committee (default 15). <p>
*
* -M iterations <br>
* Set the maximum number of Decorate iterations (default 50). <p>
*
* -S seed <br>
* Seed for random number generator. (default 0).<p>
*
* -R factor <br>
* Factor that determines number of artificial examples to generate. <p>
*
* Options after -- are passed to the designated classifier.<p>
*
* @author Prem Melville (melville@cs.utexas.edu)
* @version $Revision$ */
public class Decorate extends Classifier implements OptionHandler{
/** Set to true to get debugging output. */
protected boolean m_Debug = false;
/** The model base classifier to use. */
protected Classifier m_Classifier = new weka.classifiers.trees.J48();
/** Vector of classifiers that make up the committee/ensemble. */
protected Vector m_Committee = null;
/** The desired ensemble size. */
protected int m_DesiredSize = 15;
/** The maximum number of Decorate iterations to run. */
protected int m_NumIterations = 50;
/** The seed for random number generation. */
protected int m_Seed = 0;
/** Amount of artificial/random instances to use - specified as a
fraction of the training data size. */
protected double m_ArtSize = 1.0 ;
/** The random number generator. */
protected Random m_Random = new Random(0);
/** Attribute statistics - used for generating artificial examples. */
protected Vector m_AttributeStats = null;
/**
* Returns an enumeration describing the available options
*
* @return an enumeration of all the available options
*/
public Enumeration listOptions() {
Vector newVector = new Vector(8);
newVector.addElement(new Option(
"\tTurn on debugging output.",
"D", 0, "-D"));
newVector.addElement(new Option(
"\tDesired size of ensemble.\n"
+ "\t(default 15)",
"I", 1, "-I"));
newVector.addElement(new Option(
"\tMaximum number of Decorate iterations.\n"
+ "\t(default 50)",
"M", 1, "-M"));
newVector.addElement(new Option(
"\tFull name of base classifier.\n"
+ "\t(default weka.classifiers.trees.J48)",
"W", 1, "-W"));
newVector.addElement(new Option(
"\tSeed for random number generator.\n"
+"\tIf set to -1, use a random seed.\n"
+ "\t(default 0)",
"S", 1, "-S"));
newVector.addElement(new Option(
"\tFactor that determines number of artificial examples to generate.\n"
+"\tSpecified proportional to training set size.\n"
+ "\t(default 1.0)",
"R", 1, "-R"));
if ((m_Classifier != null) &&
(m_Classifier instanceof OptionHandler)) {
newVector.addElement(new Option(
"",
"", 0, "\nOptions specific to classifier "
+ m_Classifier.getClass().getName() + ":"));
Enumeration em = ((OptionHandler)m_Classifier).listOptions();
while (em.hasMoreElements()) {
newVector.addElement(em.nextElement());
}
}
return newVector.elements();
}
/**
* Parses a given list of options. Valid options are:<p>
*
* -D <br>
* Turn on debugging output.<p>
*
* -W classname <br>
* Specify the full class name of a weak classifier as the basis for
* Decorate (required).<p>
*
* -I num <br>
* Specify the desired size of the committee (default 15). <p>
*
* -M iterations <br>
* Set the maximum number of Decorate iterations (default 50). <p>
*
* -S seed <br>
* Seed for random number generator. (default 0).<p>
*
* -R factor <br>
* Factor that determines number of artificial examples to generate. <p>
*
* Options after -- are passed to the designated classifier.<p>
*
* @param options the list of options as an array of strings
* @exception Exception if an option is not supported
*/
public void setOptions(String[] options) throws Exception {
setDebug(Utils.getFlag('D', options));
String desiredSize = Utils.getOption('I', options);
if (desiredSize.length() != 0) {
setDesiredSize(Integer.parseInt(desiredSize));
} else {
setDesiredSize(15);
}
String maxIterations = Utils.getOption('M', options);
if (maxIterations.length() != 0) {
setNumIterations(Integer.parseInt(maxIterations));
} else {
setNumIterations(50);
}
String seed = Utils.getOption('S', options);
if (seed.length() != 0) {
setSeed(Integer.parseInt(seed));
} else {
setSeed(0);
}
String artSize = Utils.getOption('R', options);
if (artSize.length() != 0) {
setArtificialSize(Double.parseDouble(artSize));
} else {
setArtificialSize(1.0);
}
String classifierName = Utils.getOption('W', options);
if (classifierName.length() != 0) {
setClassifier(Classifier.forName(classifierName,
Utils.partitionOptions(options)));
}
}
/**
* Gets the current settings of the Classifier.
*
* @return an array of strings suitable for passing to setOptions
*/
public String [] getOptions() {
String [] classifierOptions = new String [0];
if ((m_Classifier != null) &&
(m_Classifier instanceof OptionHandler)) {
classifierOptions = ((OptionHandler)m_Classifier).getOptions();
}
String [] options = new String [classifierOptions.length + 12];
int current = 0;
if (getDebug()) {
options[current++] = "-D";
}
options[current++] = "-S"; options[current++] = "" + getSeed();
options[current++] = "-I"; options[current++] = "" + getDesiredSize();
options[current++] = "-M"; options[current++] = "" + getNumIterations();
options[current++] = "-R"; options[current++] = "" + getArtificialSize();
if (getClassifier() != null) {
options[current++] = "-W";
options[current++] = getClassifier().getClass().getName();
}
options[current++] = "--";
System.arraycopy(classifierOptions, 0, options, current,
classifierOptions.length);
current += classifierOptions.length;
while (current < options.length) {
options[current++] = "";
}
return options;
}
/**
* Returns the tip text for this property
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String desiredSizeTipText() {
return "the desired number of member classifiers in the Decorate ensemble. Decorate may terminate "
+"before this size is reached (depending on the value of numIterations). "
+"Larger ensemble sizes usually lead to more accurate models, but increases "
+"training time and model complexity.";
}
/**
* Returns the tip text for this property
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String numIterationsTipText() {
return "the maximum number of Decorate iterations to run. Each iteration generates a classifier, "
+"but does not necessarily add it to the ensemble. Decorate stops when the desired ensemble "
+"size is reached. This parameter should be greater than "
+"equal to the desiredSize. If the desiredSize is not being reached it may help to "
+"increase this value.";
}
/**
* Returns the tip text for this property
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String artificialSizeTipText() {
return "determines the number of artificial examples to use during training. Specified as "
+"a proportion of the training data. Higher values can increase ensemble diversity.";
}
/**
* Returns the tip text for this property
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String seedTipText() {
return "seed for random number generator used for creating artificial data."
+" Set to -1 to use a random seed.";
}
/**
* Returns the tip text for this property
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
b */
public String classifierTipText() {
return "the desired base learner for the ensemble.";
}
/**
* Returns a string describing classifier
* @return a description suitable for
* displaying in the explorer/experimenter gui
*/
public String globalInfo() {
return "DECORATE is a meta-learner for building diverse ensembles of "
+"classifiers by using specially constructed artificial training "
+"examples. Comprehensive experiments have demonstrated that this "
+"technique is consistently more accurate than the base classifier, Bagging and Random Forests."
+"Decorate also obtains higher accuracy than Boosting on small training sets, and achieves "
+"comparable performance on larger training sets. "
+"For more details see: P. Melville & R. J. Mooney. Constructing diverse classifier ensembles "
+"using artificial training examples (IJCAI 2003).\n"
+"P. Melville & R. J. Mooney. Creating diversity in ensembles using artificial data (submitted).";
}
/**
* Set debugging mode
*
* @param debug true if debug output should be printed
*/
public void setDebug(boolean debug) {
m_Debug = debug;
}
/**
* Get whether debugging is turned on
*
* @return true if debugging output is on
*/
public boolean getDebug() {
return m_Debug;
}
/**
* Set the base classifier for Decorate.
*
* @param newClassifier the Classifier to use.
*/
public void setClassifier(Classifier newClassifier) {
m_Classifier = newClassifier;
}
/**
* Get the classifier used as the base classifier
*
* @return the classifier used as the classifier
*/
public Classifier getClassifier() {
return m_Classifier;
}
/**
* Factor that determines number of artificial examples to generate.
*
* @return factor that determines number of artificial examples to generate
*/
public double getArtificialSize() {
return m_ArtSize;
}
/**
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -