📄 bagging.java
字号:
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* Bagging.java
* Copyright (C) 1999 Eibe Frank
*
*/
package weka.classifiers.meta;
import java.util.Enumeration;
import java.util.Random;
import java.util.Vector;
import weka.classifiers.Evaluation;
import weka.classifiers.RandomizableIteratedSingleClassifierEnhancer;
import weka.core.AdditionalMeasureProducer;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.Randomizable;
import weka.core.UnsupportedAttributeTypeException;
import weka.core.Utils;
import weka.core.WeightedInstancesHandler;
/**
* Class for bagging a classifier. For more information, see<p>
*
* Leo Breiman (1996). <i>Bagging predictors</i>. Machine
* Learning, 24(2):123-140. <p>
*
* Valid options are:<p>
*
* -W classname <br>
* Specify the full class name of a weak classifier as the basis for
* bagging (required).<p>
*
* -I num <br>
* Set the number of bagging iterations (default 10). <p>
*
* -S seed <br>
* Random number seed for resampling (default 1). <p>
*
* -P num <br>
* Size of each bag, as a percentage of the training size (default 100). <p>
*
* -O <br>
* Compute out of bag error. <p>
*
* Options after -- are passed to the designated classifier.<p>
*
* @author Eibe Frank (eibe@cs.waikato.ac.nz)
* @author Len Trigg (len@reeltwo.com)
* @author Richard Kirkby (rkirkby@cs.waikato.ac.nz)
* @version $Revision$
*/
public class Bagging extends RandomizableIteratedSingleClassifierEnhancer
implements WeightedInstancesHandler, AdditionalMeasureProducer {
/** The size of each bag sample, as a percentage of the training size */
protected int m_BagSizePercent = 100;
/** Whether to calculate the out of bag error */
protected boolean m_CalcOutOfBag = false;
/** The out of bag error that has been calculated */
protected double m_OutOfBagError;
/**
* Returns a string describing classifier
* @return a description suitable for
* displaying in the explorer/experimenter gui
*/
public String globalInfo() {
return "Class for bagging a classifier to reduce variance. Can do classification "
+ "and regression depending on the base learner. For more information, see\n\n"
+ "Leo Breiman (1996). \"Bagging predictors\". Machine "
+ "Learning, 24(2):123-140.";
}
/**
* Constructor.
*/
public Bagging() {
m_Classifier = new weka.classifiers.trees.REPTree();
}
/**
* String describing default classifier.
*/
protected String defaultClassifierString() {
return "weka.classifiers.trees.REPTree";
}
/**
* Returns an enumeration describing the available options.
*
* @return an enumeration of all the available options.
*/
public Enumeration listOptions() {
Vector newVector = new Vector(2);
newVector.addElement(new Option(
"\tSize of each bag, as a percentage of the\n"
+ "\ttraining set size. (default 100)",
"P", 1, "-P"));
newVector.addElement(new Option(
"\tCalculate the out of bag error.",
"O", 0, "-O"));
Enumeration em = super.listOptions();
while (em.hasMoreElements()) {
newVector.addElement(em.nextElement());
}
return newVector.elements();
}
/**
* Parses a given list of options. Valid options are:<p>
*
* -W classname <br>
* Specify the full class name of a weak classifier as the basis for
* bagging (required).<p>
*
* -I num <br>
* Set the number of bagging iterations (default 10). <p>
*
* -S seed <br>
* Random number seed for resampling (default 1).<p>
*
* -P num <br>
* Size of each bag, as a percentage of the training size (default 100). <p>
*
* -O <br>
* Compute out of bag error. <p>
*
* Options after -- are passed to the designated classifier.<p>
*
* @param options the list of options as an array of strings
* @exception Exception if an option is not supported
*/
public void setOptions(String[] options) throws Exception {
String bagSize = Utils.getOption('P', options);
if (bagSize.length() != 0) {
setBagSizePercent(Integer.parseInt(bagSize));
} else {
setBagSizePercent(100);
}
setCalcOutOfBag(Utils.getFlag('O', options));
super.setOptions(options);
}
/**
* Gets the current settings of the Classifier.
*
* @return an array of strings suitable for passing to setOptions
*/
public String [] getOptions() {
String [] superOptions = super.getOptions();
String [] options = new String [superOptions.length + 3];
int current = 0;
options[current++] = "-P";
options[current++] = "" + getBagSizePercent();
if (getCalcOutOfBag()) {
options[current++] = "-O";
}
System.arraycopy(superOptions, 0, options, current,
superOptions.length);
current += superOptions.length;
while (current < options.length) {
options[current++] = "";
}
return options;
}
/**
* Returns the tip text for this property
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String bagSizePercentTipText() {
return "Size of each bag, as a percentage of the training set size.";
}
/**
* Gets the size of each bag, as a percentage of the training set size.
*
* @return the bag size, as a percentage.
*/
public int getBagSizePercent() {
return m_BagSizePercent;
}
/**
* Sets the size of each bag, as a percentage of the training set size.
*
* @param newBagSizePercent the bag size, as a percentage.
*/
public void setBagSizePercent(int newBagSizePercent) {
m_BagSizePercent = newBagSizePercent;
}
/**
* Returns the tip text for this property
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String calcOutOfBagTipText() {
return "Whether the out-of-bag error is calculated.";
}
/**
* Set whether the out of bag error is calculated.
*
* @param calcOutOfBag whether to calculate the out of bag error
*/
public void setCalcOutOfBag(boolean calcOutOfBag) {
m_CalcOutOfBag = calcOutOfBag;
}
/**
* Get whether the out of bag error is calculated.
*
* @return whether the out of bag error is calculated
*/
public boolean getCalcOutOfBag() {
return m_CalcOutOfBag;
}
/**
* Gets the out of bag error that was calculated as the classifier
* was built.
*
* @return the out of bag error
*/
public double measureOutOfBagError() {
return m_OutOfBagError;
}
/**
* Returns an enumeration of the additional measure names.
*
* @return an enumeration of the measure names
*/
public Enumeration emerateMeasures() {
Vector newVector = new Vector(1);
newVector.addElement("measureOutOfBagError");
return newVector.elements();
}
/**
* Returns the value of the named measure.
*
* @param measureName the name of the measure to query for its value
* @return the value of the named measure
* @exception IllegalArgumentException if the named measure is not supported
*/
public double getMeasure(String additionalMeasureName) {
if (additionalMeasureName.equalsIgnoreCase("measureOutOfBagError")) {
return measureOutOfBagError();
}
else {throw new IllegalArgumentException(additionalMeasureName
+ " not supported (Bagging)");
}
}
/**
* Creates a new dataset of the same size using random sampling
* with replacement according to the given weight vector. The
* weights of the instances in the new dataset are set to one.
* The length of the weight vector has to be the same as the
* number of instances in the dataset, and all weights have to
* be positive.
*
* @param data the data to be sampled from
* @param random a random number generator
* @param sampled indicating which instance has been sampled
* @return the new dataset
* @exception IllegalArgumentException if the weights array is of the wrong
* length or contains negative weights.
*/
public final Instances resampleWithWeights(Instances data,
Random random,
boolean[] sampled) {
double[] weights = new double[data.numInstances()];
for (int i = 0; i < weights.length; i++) {
weights[i] = data.instance(i).weight();
}
Instances newData = new Instances(data, data.numInstances());
if (data.numInstances() == 0) {
return newData;
}
double[] probabilities = new double[data.numInstances()];
double sumProbs = 0, sumOfWeights = Utils.sum(weights);
for (int i = 0; i < data.numInstances(); i++) {
sumProbs += random.nextDouble();
probabilities[i] = sumProbs;
}
Utils.normalize(probabilities, sumProbs / sumOfWeights);
// Make sure that rounding errors don't mess things up
probabilities[data.numInstances() - 1] = sumOfWeights;
int k = 0; int l = 0;
sumProbs = 0;
while ((k < data.numInstances() && (l < data.numInstances()))) {
if (weights[l] < 0) {
throw new IllegalArgumentException("Weights have to be positive.");
}
sumProbs += weights[l];
while ((k < data.numInstances()) &&
(probabilities[k] <= sumProbs)) {
newData.add(data.instance(l));
sampled[l] = true;
newData.instance(k).setWeight(1);
k++;
}
l++;
}
return newData;
}
/**
* Bagging method.
*
* @param data the training data to be used for generating the
* bagged classifier.
* @exception Exception if the classifier could not be built successfully
*/
public void buildClassifier(Instances data) throws Exception {
super.buildClassifier(data);
if (data.checkForStringAttributes()) {
throw new UnsupportedAttributeTypeException("Cannot handle string attributes!");
}
if (m_CalcOutOfBag && (m_BagSizePercent != 100)) {
throw new IllegalArgumentException("Bag size needs to be 100% if " +
"out-of-bag error is to be calculated!");
}
double outOfBagCount = 0.0;
double errorSum = 0.0;
int bagSize = data.numInstances() * m_BagSizePercent / 100;
Random random = new Random(m_Seed);
for (int j = 0; j < m_Classifiers.length; j++) {
Instances bagData = null;
boolean[] inBag = null;
// create the in-bag dataset
if (m_CalcOutOfBag) {
inBag = new boolean[data.numInstances()];
bagData = resampleWithWeights(data, random, inBag);
} else {
bagData = data.resampleWithWeights(random);
if (bagSize < data.numInstances()) {
bagData.randomize(random);
Instances newBagData = new Instances(bagData, 0, bagSize);
bagData = newBagData;
}
}
if (m_Classifier instanceof Randomizable) {
((Randomizable) m_Classifiers[j]).setSeed(random.nextInt());
}
// build the classifier
m_Classifiers[j].buildClassifier(bagData);
if (m_CalcOutOfBag) {
// calculate out of bag error
for (int i=0; i<inBag.length; i++) {
if (!inBag[i]) {
Instance outOfBagInst = data.instance(i);
outOfBagCount += outOfBagInst.weight();
if (data.classAttribute().isNumeric()) {
errorSum += outOfBagInst.weight() *
Math.abs(m_Classifiers[j].classifyInstance(outOfBagInst)
- outOfBagInst.classValue());
} else {
if (m_Classifiers[j].classifyInstance(outOfBagInst)
!= outOfBagInst.classValue()) {
errorSum += outOfBagInst.weight();
}
}
}
}
}
}
m_OutOfBagError = errorSum / outOfBagCount;
}
/**
* Calculates the class membership probabilities for the given test
* instance.
*
* @param instance the instance to be classified
* @return preedicted class probability distribution
* @exception Exception if distribution can't be computed successfully
*/
public double[] distributionForInstance(Instance instance) throws Exception {
double [] sums = new double [instance.numClasses()], newProbs;
for (int i = 0; i < m_NumIterations; i++) {
if (instance.classAttribute().isNumeric() == true) {
sums[0] += m_Classifiers[i].classifyInstance(instance);
} else {
newProbs = m_Classifiers[i].distributionForInstance(instance);
for (int j = 0; j < newProbs.length; j++)
sums[j] += newProbs[j];
}
}
if (instance.classAttribute().isNumeric() == true) {
sums[0] /= (double)m_NumIterations;
return sums;
} else if (Utils.eq(Utils.sum(sums), 0)) {
return sums;
} else {
Utils.normalize(sums);
return sums;
}
}
/**
* Returns description of the bagged classifier.
*
* @return description of the bagged classifier as a string
*/
public String toString() {
if (m_Classifiers == null) {
return "Bagging: No model built yet.";
}
StringBuffer text = new StringBuffer();
text.append("All the base classifiers: \n\n");
for (int i = 0; i < m_Classifiers.length; i++)
text.append(m_Classifiers[i].toString() + "\n\n");
if (m_CalcOutOfBag) {
text.append("Out of bag error: "
+ Utils.doubleToString(m_OutOfBagError, 4)
+ "\n\n");
}
return text.toString();
}
/**
* Main method for testing this class.
*
* @param argv the options
*/
public static void main(String [] argv) {
try {
System.out.println(Evaluation.
evaluateModel(new Bagging(), argv));
} catch (Exception e) {
System.err.println(e.getMessage());
}
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -