📄 naivebayesupdateable.java
字号:
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* NaiveBayesUpdateable.java
* Copyright (C) 1999 Eibe Frank,Len Trigg
*
*/
package weka.classifiers.bayes;
import weka.classifiers.Evaluation;
import weka.classifiers.UpdateableClassifier;
/**
* Class for a Naive Bayes classifier using estimator classes. This is the
* updateable version of NaiveBayes.
* This classifier will use a default precision of 0.1 for numeric attributes
* when buildClassifier is called with zero training instances.
* <p>
* For more information on Naive Bayes classifiers, see<p>
*
* George H. John and Pat Langley (1995). <i>Estimating
* Continuous Distributions in Bayesian Classifiers</i>. Proceedings
* of the Eleventh Conference on Uncertainty in Artificial
* Intelligence. pp. 338-345. Morgan Kaufmann, San Mateo.<p>
*
* Valid options are:<p>
*
* -K <br>
* Use kernel estimation for modelling numeric attributes rather than
* a single normal distribution.<p>
*
* @author Len Trigg (trigg@cs.waikato.ac.nz)
* @author Eibe Frank (eibe@cs.waikato.ac.nz)
* @version $Revision$
*/
public class NaiveBayesUpdateable extends NaiveBayes
implements UpdateableClassifier {
/**
* Returns a string describing this classifier
* @return a description of the classifier suitable for
* displaying in the explorer/experimenter gui
*/
public String globalInfo() {
return "Class for a Naive Bayes classifier using estimator classes. This is the "
+"updateable version of NaiveBayes."
+"This classifier will use a default precision of 0.1 for numeric attributes "
+"when buildClassifier is called with zero training instances.\n\n"
+"For more information on Naive Bayes classifiers, see\n\n"
+"George H. John and Pat Langley (1995). Estimating "
+"Continuous Distributions in Bayesian Classifiers. Proceedings "
+"of the Eleventh Conference on Uncertainty in Artificial "
+"Intelligence. pp. 338-345. Morgan Kaufmann, San Mateo.\n\n";
}
/**
* Set whether supervised discretization is to be used.
*
* @param newblah true if supervised discretization is to be used.
*/
public void setUseSupervisedDiscretization(boolean newblah) {
if (newblah) {
throw new IllegalArgumentException("Can't use discretization " +
"in NaiveBayesUpdateable!");
}
m_UseDiscretization = false;
}
/**
* Main method for testing this class.
*
* @param argv the options
*/
public static void main(String [] argv) {
try {
System.out.println(Evaluation.evaluateModel(new NaiveBayesUpdateable(), argv));
} catch (Exception e) {
e.printStackTrace();
System.err.println(e.getMessage());
}
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -