⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 hillclimber.java

📁 一个数据挖掘软件ALPHAMINERR的整个过程的JAVA版源代码
💻 JAVA
字号:
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 * TabuSearch.java
 * Copyright (C) 2004 Remco Bouckaert
 * 
 */
 
package weka.classifiers.bayes.net.search.global;

import weka.classifiers.bayes.BayesNet;
import weka.classifiers.bayes.net.ParentSet;
import weka.core.*;
import java.util.*;
import java.io.Serializable;

/** HillClimber implements hill climbing using local search 
 * for learning Bayesian network.
 * 
 * @author Remco Bouckaert (rrb@xm.co.nz)
 * Version: $Revision$
 */
public class HillClimber extends GlobalScoreSearchAlgorithm {

	/** the Operation class contains info on operations performed
	 * on the current Bayesian network.
	 */
    class Operation implements Serializable {
    	// constants indicating the type of an operation
    	final static int OPERATION_ADD = 0;
    	final static int OPERATION_DEL = 1;
    	final static int OPERATION_REVERSE = 2;
    	/** c'tor **/
        public Operation() {
        }
		/** c'tor + initializers
		 * 
		 * @param nTail
		 * @param nHead
		 * @param nOperation
		 */ 
	    public Operation(int nTail, int nHead, int nOperation) {
			m_nHead = nHead;
			m_nTail = nTail;
			m_nOperation = nOperation;
		}
		/** compare this operation with another
		 * @param other: operation to compare with
		 * @return true if operation is the same
		 */
		public boolean equals(Operation other) {
			if (other == null) {
				return false;
			}
			return ((	m_nOperation == other.m_nOperation) &&
			(m_nHead == other.m_nHead) &&
			(m_nTail == other.m_nTail));
		} // equals
		/** number of the tail node **/
        public int m_nTail;
		/** number of the head node **/
        public int m_nHead;
		/** type of operation (ADD, DEL, REVERSE) **/
        public int m_nOperation;
        /** change of score due to this operation **/
        public double m_fScore = -1E100;
    } // class Operation
	
    /** use the arc reversal operator **/
    boolean m_bUseArcReversal = false;

	/**
	* search determines the network structure/graph of the network
	* with the Taby algorithm.
	**/
    protected void search(BayesNet bayesNet, Instances instances) throws Exception {
    	m_BayesNet = bayesNet;
		double fScore = calcScore(bayesNet);
        // go do the search        
		Operation oOperation = getOptimalOperation(bayesNet, instances);
		while ((oOperation != null) && (oOperation.m_fScore > fScore)) {
			performOperation(bayesNet, instances, oOperation);
			fScore = oOperation.m_fScore;
			oOperation = getOptimalOperation(bayesNet, instances);
        }        
    } // search



	/** check whether the operation is not in the forbidden.
	 * For base hill climber, there are no restrictions on operations,
	 * so we always return true.
	 * @param oOperation: operation to be checked
	 * @return true if operation is not in the tabu list
	 */
	boolean isNotTabu(Operation oOperation) {
		return true;
	} // isNotTabu

	/** getOptimalOperation finds the optimal operation that can be performed
	 * on the Bayes network that is not in the tabu list.
	 * @param bayesNet: Bayes network to apply operation on
	 * @param instances: data set to learn from
	 * @return optimal operation found
	 * @throws Exception
	 */
    Operation getOptimalOperation(BayesNet bayesNet, Instances instances) throws Exception {
        Operation oBestOperation = new Operation();

		// Add???
		oBestOperation = findBestArcToAdd(bayesNet, instances, oBestOperation);
		// Delete???
		oBestOperation = findBestArcToDelete(bayesNet, instances, oBestOperation);
		// Reverse???
		if (getUseArcReversal()) {
			oBestOperation = findBestArcToReverse(bayesNet, instances, oBestOperation);
		}

		// did we find something?
		if (oBestOperation.m_fScore == -1E100) {
			return null;
		}

        return oBestOperation;
    } // getOptimalOperation

	/** performOperation applies an operation 
	 * on the Bayes network and update the cache.
	 * @param bayesNet: Bayes network to apply operation on
	 * @param instances: data set to learn from
	 * @param oOperation: operation to perform
	 * @throws Exception
	 */
	void performOperation(BayesNet bayesNet, Instances instances, Operation oOperation) throws Exception {
		// perform operation
		switch (oOperation.m_nOperation) {
			case Operation.OPERATION_ADD:
				applyArcAddition(bayesNet, oOperation.m_nHead, oOperation.m_nTail, instances);
				if (bayesNet.getDebug()) {
					System.out.print("Add " + oOperation.m_nHead + " -> " + oOperation.m_nTail);
				}
				break;
			case Operation.OPERATION_DEL:
				applyArcDeletion(bayesNet, oOperation.m_nHead, oOperation.m_nTail, instances);
				if (bayesNet.getDebug()) {
					System.out.print("Del " + oOperation.m_nHead + " -> " + oOperation.m_nTail);
				}
				break;
			case Operation.OPERATION_REVERSE:
				applyArcDeletion(bayesNet, oOperation.m_nHead, oOperation.m_nTail, instances);
				applyArcAddition(bayesNet, oOperation.m_nTail, oOperation.m_nHead, instances);
				if (bayesNet.getDebug()) {
					System.out.print("Rev " + oOperation.m_nHead+ " -> " + oOperation.m_nTail);
				}
				break;
		}
	} // performOperation


	void applyArcAddition(BayesNet bayesNet, int iHead, int iTail, Instances instances) {
		ParentSet bestParentSet = bayesNet.getParentSet(iHead);
		bestParentSet.addParent(iTail, instances);
	} // applyArcAddition

	void applyArcDeletion(BayesNet bayesNet, int iHead, int iTail, Instances instances) {
		ParentSet bestParentSet = bayesNet.getParentSet(iHead);
		bestParentSet.deleteParent(iTail, instances);
	} // applyArcAddition


	/** find best (or least bad) arc addition operation
	 * @param bayesNet: Bayes network to add arc to
	 * @param instances: data set
	 * @return Operation containing best arc to add, or null if no arc addition is allowed 
	 * (this can happen if any arc addition introduces a cycle, or all parent sets are filled
	 * up to the maximum nr of parents).
	 */
	Operation findBestArcToAdd(BayesNet bayesNet, Instances instances, Operation oBestOperation) throws Exception {
		int nNrOfAtts = instances.numAttributes();
		// find best arc to add
		for (int iAttributeHead = 0; iAttributeHead < nNrOfAtts; iAttributeHead++) {
			if (bayesNet.getParentSet(iAttributeHead).getNrOfParents() < m_nMaxNrOfParents) {
				for (int iAttributeTail = 0; iAttributeTail < nNrOfAtts; iAttributeTail++) {
					if (addArcMakesSense(bayesNet, instances, iAttributeHead, iAttributeTail)) {
						Operation oOperation = new Operation(iAttributeTail, iAttributeHead, Operation.OPERATION_ADD);
						double fScore = calcScoreWithExtraParent(oOperation.m_nHead, oOperation.m_nTail);
						if (fScore > oBestOperation.m_fScore) {
							if (isNotTabu(oOperation)) {
								oBestOperation = oOperation;
								oBestOperation.m_fScore = fScore;
							}
						}
					}
				}
			}
		}
		return oBestOperation;
	} // findBestArcToAdd

	/** find best (or least bad) arc deletion operation
	 * @param bayesNet: Bayes network to delete arc from
	 * @param instances: data set
	 * @return Operation containing best arc to delete, or null if no deletion can be made 
	 * (happens when there is no arc in the network yet).
	 */
	Operation findBestArcToDelete(BayesNet bayesNet, Instances instances, Operation oBestOperation) throws Exception {
		int nNrOfAtts = instances.numAttributes();
		// find best arc to delete
		for (int iNode = 0; iNode < nNrOfAtts; iNode++) {
			ParentSet parentSet = bayesNet.getParentSet(iNode);
			for (int iParent = 0; iParent < parentSet.getNrOfParents(); iParent++) {
				Operation oOperation = new Operation(parentSet.getParent(iParent), iNode, Operation.OPERATION_DEL);
				double fScore = calcScoreWithMissingParent(oOperation.m_nHead, oOperation.m_nTail);
				if (fScore > oBestOperation.m_fScore) {
					if (isNotTabu(oOperation)) {
						oBestOperation = oOperation;
						oBestOperation.m_fScore = fScore;
					}
				}
			}
		}
		return oBestOperation;
	} // findBestArcToDelete

	/** find best (or least bad) arc reversal operation
	 * @param bayesNet: Bayes network to reverse arc in
	 * @param instances: data set
	 * @return Operation containing best arc to reverse, or null if no reversal is allowed
	 * (happens if there is no arc in the network yet, or when any such reversal introduces
	 * a cycle).
	 */
	Operation findBestArcToReverse(BayesNet bayesNet, Instances instances, Operation oBestOperation) throws Exception {
		int nNrOfAtts = instances.numAttributes();
		// find best arc to reverse
		for (int iNode = 0; iNode < nNrOfAtts; iNode++) {
			ParentSet parentSet = bayesNet.getParentSet(iNode);
			for (int iParent = 0; iParent < parentSet.getNrOfParents(); iParent++) {
				int iTail = parentSet.getParent(iParent);
				// is reversal allowed?
				if (reverseArcMakesSense(bayesNet, instances, iNode, iTail) && 
				    bayesNet.getParentSet(iTail).getNrOfParents() < m_nMaxNrOfParents) {
					// go check if reversal results in the best step forward
					Operation oOperation = new Operation(parentSet.getParent(iParent), iNode, Operation.OPERATION_REVERSE);
					double fScore = calcScoreWithReversedParent(oOperation.m_nHead, oOperation.m_nTail);
					if (fScore > oBestOperation.m_fScore) {
						if (isNotTabu(oOperation)) {
							oBestOperation = oOperation;
							oBestOperation.m_fScore = fScore;
						}
					}
				}
			}
		}
		return oBestOperation;
	} // findBestArcToReverse
	

	/**
	 * Method declaration
	 *
	 * @param nMaxNrOfParents
	 *
	 */
	public void setMaxNrOfParents(int nMaxNrOfParents) {
	  m_nMaxNrOfParents = nMaxNrOfParents;
	} 

	/**
	 * Method declaration
	 *
	 * @return
	 *
	 */
	public int getMaxNrOfParents() {
	  return m_nMaxNrOfParents;
	} 

	/**
	 * Returns an enumeration describing the available options.
	 *
	 * @return an enumeration of all the available options.
	 */
	public Enumeration listOptions() {
		Vector newVector = new Vector(2);

		newVector.addElement(new Option("\tMaximum number of parents\n", "P", 1, "-P <nr of parents>"));
		newVector.addElement(new Option("\tUse arc reversal operation.\n\t(default false)", "R", 0, "-R"));

		Enumeration em = super.listOptions();
		while (em.hasMoreElements()) {
			newVector.addElement(em.nextElement());
		}
		return newVector.elements();
	} // listOptions

	/**
	 * Parses a given list of options. Valid options are:<p>
	 *
	 * For other options see search algorithm.
	 *
	 * @param options the list of options as an array of strings
	 * @exception Exception if an option is not supported
	 */
	public void setOptions(String[] options) throws Exception {
		setUseArcReversal(Utils.getFlag('R', options));

		setInitAsNaiveBayes ((Utils.getFlag('N', options)));
		
		String sMaxNrOfParents = Utils.getOption('P', options);
		if (sMaxNrOfParents.length() != 0) {
		  setMaxNrOfParents(Integer.parseInt(sMaxNrOfParents));
		} else {
		  setMaxNrOfParents(100000);
		}
		
		super.setOptions(options);
	} // setOptions

	/**
	 * Gets the current settings of the search algorithm.
	 *
	 * @return an array of strings suitable for passing to setOptions
	 */
	public String[] getOptions() {
		String[] superOptions = super.getOptions();
		String[] options = new String[7 + superOptions.length];
		int current = 0;
		if (getUseArcReversal()) {
		  options[current++] = "-R";
		}
		
		if (!getInitAsNaiveBayes()) {
		  options[current++] = "-N";
		} 

		if (m_nMaxNrOfParents != 10000) {
		  options[current++] = "-P";
		  options[current++] = "" + m_nMaxNrOfParents;
		} 

		// insert options from parent class
		for (int iOption = 0; iOption < superOptions.length; iOption++) {
			options[current++] = superOptions[iOption];
		}

		// Fill up rest with empty strings, not nulls!
		while (current < options.length) {
			options[current++] = "";
		}
		return options;
	} // getOptions

	/**
	 * Method declaration
	 *
	 * @param bInitAsNaiveBayes
	 *
	 */
	public void setInitAsNaiveBayes(boolean bInitAsNaiveBayes) {
	  m_bInitAsNaiveBayes = bInitAsNaiveBayes;
	} 

	/**
	 * Method declaration
	 *
	 * @return
	 *
	 */
	public boolean getInitAsNaiveBayes() {
	  return m_bInitAsNaiveBayes;
	} 

	/** get use the arc reversal operation
	 * @return whether the arc reversal operation should be used
	 */
	public boolean getUseArcReversal() {
		return m_bUseArcReversal;
	} // getUseArcReversal

	/** set use the arc reversal operation
	 * @param bUseArcReversal whether the arc reversal operation should be used
	 */
	public void setUseArcReversal(boolean bUseArcReversal) {
		m_bUseArcReversal = bUseArcReversal;
	} // setUseArcReversal

	/**
	 * This will return a string describing the search algorithm.
	 * @return The string.
	 */
	public String globalInfo() {
	  return "This Bayes Network learning algorithm uses a hill climbing algorithm " +
	  "adding, deleting and reversing arcs. The search is not restricted by an order " +
	  "on the variables (unlike K2). The difference with B and B2 is that this hill " +
	  "climber also considers arrows part of the naive Bayes structure for deletion.";
	} // globalInfo

	/**
	 * @return a string to describe the Use Arc Reversal option.
	 */
	public String useArcReversalTipText() {
	  return "When set to true, the arc reversal operation is used in the search.";
	} // useArcReversalTipText

} // HillClimber

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -